
© Red Gate Software Ltd 1

SQL Source Control 2.1

March 30th, 2011

Note: this documentation applies to an old version of this product.

For the latest documentation, see documentation.red-gate.com

documentation.red-gate.com

© Red Gate Software Ltd 2

Contents

Getting started ... 3

Worked example: Subversion (SVN).. 4

Worked example: Team Foundation Server (TFS) ... 13

Worked example: Mercurial .. 22

Linking a database to source control ... 31

Committing changes ... 34

Source controlling data .. 37

Getting the latest version... 39

Viewing source control logs / history ... 40

Getting a specific version ... 42

Deploying a database from source control .. 44

Undoing changes .. 47

Conflicts .. 49

Using SVN bug IDs & TFS work items .. 51

Working with config files .. 52

Using filters to exclude objects ... 54

Branching and merging ... 58

Setting up a local Subversion repository .. 61

Setting up a Subversion server ... 63

Using the evaluation repository .. 67

Moving the evaluation repository to an SVN server ... 69

Bug reports and feedback .. 72

© Red Gate Software Ltd 3

SQL Source Control is an add-in for SQL Server Management Studio that lets you get

your database into source control.

SQL Source Control therefore brings the change management and collaboration benefits

of source control to database development, without affecting your workflow, or requiring

new development processes.

Note: SQL Source Control is not a source control system; it allows you to store your

databases in your existing source control system.

Supported source control systems

Currently, SQL Source Control supports:

 Subversion (SVN)

 Team Foundation Server (TFS)

 SourceGear Vault

 Any source control system with a command line interface. Presets are included for:

 Mercurial

 Git

 Perforce

SQL Source Control: step-by-step

1. Link the database to source control (page 31)

2. Commit the objects (page 34)

3. Optionally commit static (lookup) data (page 37)

4. Make development changes normally

5. Commit changes or get the latest version (page 39)

Worked examples

Learn more about SQL Source Control by following a detailed example:

 Worked example: setting up SQL Source Control with SVN (page 4)

 Worked example: setting up SQL Source Control with TFS (page 13)

 Worked example: setting up SQL Source Control with Mercurial (page 22)

 Worked example: Deploying with migration scripts

Getting started

© Red Gate Software Ltd 4

This example shows you how to set up database source control so teams of developers

can work on a database update.

This example uses:

 The Subversion (http://subversion.apache.org/) source control system

 The Tortoise SVN (http://tortoisesvn.tigris.org/) client for Subversion

To follow this example, you should download and install the latest version of TortoiseSVN

(http://tortoisesvn.net/downloads)

In the example, the Magic Widget Company has a SQL Server database running on a live

web server. This database contains a number of tables, views, stored procedures, and

other database objects. The Magic Widget Company's development team wants to begin

working on an update to this database. They have already created a copy of the

production database, as a baseline to develop against.

They now need to source control the development database, so that each developer can

get their own dedicated copy to work on.

This example has 6 steps:

1. Set up the database (page 4)

2. Link the database to source control (page 4)

3. Commit the database objects to source control (page 7)

4. Get the latest version (page 9)

5. Make development changes (page 10)

6. Commit the development changes to source control (page 11)

1. Set up the database

This worked example uses the WidgetDevelopment database.

To create the database on your SQL Server:

1. If it already exists, delete WidgetDevelopment

2. Click here to view the SQL creation script

(/support/SQL_Source_Control/help/2.0/WidgetDevScript.sql) for the database.

3. Copy the script, paste it into a query window in SQL Server Management Studio, and

run it.

The database and its schema are created.

2. Link the database to source control

Linking associates the database with a location in source control.

Worked example: Subversion (SVN)

http://subversion.apache.org/
http://tortoisesvn.tigris.org/
http://tortoisesvn.net/downloads
/support/SQL_Source_Control/help/2.0/WidgetDevScript.sql

© Red Gate Software Ltd 5

To link the database:

1. Open SQL Server Management Studio if it is not already open.

2. In the Object Explorer, select the WidgetDevelopment database, right-click, and

click Link database to source control

The Link to Source Control dialog box is displayed:

3. Under Source control system, on the left hand side, ensure Subversion is selected.

4. In Repository URL, type or paste the URL for the root of your source control

repository. For example: https://WidgetSourceCode.MagicWidget.com/

The Browse button is enabled.

Note that the repository URL is case sensitive.

5. Click Browse

© Red Gate Software Ltd 6

The Select Scripts Folder Repository dialog box is displayed:

Here you can select an folder to link to, or create one if you are linking for the first

time. We will create a folder.

6. Click Create Folder

The Create Folder dialog box is displayed:

Type a name for the folder.

In this example, name the folder: WidgetDevScripts

7. Click Create

A dialog box is displayed for you to supply a commit comment for the creation of the

new folder in source control. Type a comment, and click OK

The folder is created, and appears in the list on the Select Scripts Folder Repository

dialog box.

8. Ensure the folder you created is selected, and click Select

© Red Gate Software Ltd 7

9. On the Link to Source Control dialog box, the Link button is now enabled.

10. Click Link

You may be prompted for login credentials for your source control repository.

A link to the repository is created, and SQL Source Control is now able to determine

differences between the database and the repository.

The database icon in the Object Explorer changes, showing that the database is linked

to source control, and that there are changes to commit:

Note that the database objects have not yet been committed to source control.

3. Commit the database objects to source control

To finish source controlling the database, commit the objects:

1. In SQL Source Control, click the Commit Changes tab.

© Red Gate Software Ltd 8

The Commit Changes tab displays a list of all the objects with database versions that

do not match the latest source control version:

Because none of the objects yet have versions in source control, they are all listed.

You can view the creation script for an object by clicking it. The script is displayed in

the Object Differences pane, below the list of objects to commit.

2. In Comment to add on commit, type or paste a comment.

Comments are recommended as they help provide a detailed change history.

In this example, type Initial commit of all objects.

3. Click Commit

SQL Source Control displays a message dialog box showing the progress of the

commit.

When the commit is complete, click OK to close the message box.

The objects are committed to source control and other users can now get the latest

version of the database.

The Object Explorer is updated to show that there are now no outstanding changes to

commit.

© Red Gate Software Ltd 9

4. Get the latest version

Now the database is in source control, another user can get the latest version, and make

development changes.

They create a new database, link it to source control, and update it with the latest version

of all the objects.

Linking the database

1. In SQL Server Management Studio, create a new database, with the name

WidgetDevelopment

2. In the Object Explorer, ensure WidgetDevelopment is selected. On the Setup tab,

click Link database to source control.

The Link Database to Source Control dialog box is displayed.

3. Under Source control system, on the left hand side, ensure Subversion is selected.

4. In Repository URL, type or paste the URL of the database in source control.

Note that the repository URL is case sensitive.

5. Click Link

You may be prompted for login credentials for your source control repository.

A link to the repository is created, and SQL Source Control is able to determine

differences between the database and the repository.

However, the database has not yet been updated with the objects from source

control.

Getting the latest version

1. Click the Get Latest tab.

© Red Gate Software Ltd 10

Because you do not yet have any of the objects in your database, all the objects in

WidgetDevelopment are listed here:

2. Ensure all of the objects are selected.

3. Click Get Latest

A progress dialog box is displayed while SQL Source Control updates the database.

The database is updated to the latest version.

5. Make development changes

Development proceeds normally, and the database is modified.

A column is changed in the table Widgets, to allow longer widget descriptions. This

change is committed to source control.

1. In SQL Server Management Studio, open a new query window, and type or paste the

following SQL statement:

USE WidgetDevelopment

GO

ALTER TABLE [dbo].[Widgets] ALTER COLUMN [Description] [nvarchar] (100)

2. Click Execute or press F5

The script runs; the database is updated.

© Red Gate Software Ltd 11

3. SQL Source Control detects the change to the database, and highlights the affected

object in the Object Explorer:

You can now commit the change.

6. Commit the development changes to source control

1. In the Object Explorer, right click the table Widgets, and click Commit changes to

source control

© Red Gate Software Ltd 12

The Commit changes tab is displayed:

The change to the table Widgets is listed as an edit you can commit.

The Object Differences pane shows the difference between your database version, and

the latest version in source control.

2. In Comment to add on commit, type or paste a comment.

In this example, type Modified Description column

3. Click Commit

SQL Source Control displays a message dialog box that shows the progress of the

commit.

When the commit is complete, click OK to close the message box.

Your change is committed to source control. The Commit Changes tab lists no objects

with changes to commit, and no objects are highlighted in the Object Explorer.

Other users can now get the latest version of the table.

© Red Gate Software Ltd 13

This example shows you how to set up database source control so that teams of

developers can work on a database update.

Note: If you are using Team Foundation Server 2012 or tfspreview.com, you must first

edit a config file. For information on how to do this, see Using SQL Source Control with

Team Foundation Server 2012 or tfspreview.com

(/SupportCenter/Content/SQL_Source_Control/knowledgebase/SoC_Using_TFS2012).

This example requires:

 The Team Foundation Server (TFS) source control system

 Microsoft Team Explorer client for Visual Studio

In the example, the Magic Widget Company has a SQL Server database. This database

contains a number of tables, views, stored procedures, and other database objects. The

Magic Widget Company's development team wants to begin working on an update to this

database. They have already created a copy of the production database, as a baseline to

develop against.

They now need to source control the development database, so that each developer can

work on their own dedicated copy.

This example has 6 steps:

1. Set up the database (page 4)

2. Link the database to source control (page 14)

3. Commit the database objects to source control (page 7)

4. Get the latest version

5. Make development changes (page 10)

6. Commit the development changes to source control (page 11)

1. Set up the database

This worked example uses the WidgetDevelopment database.

To create the database on your SQL Server:

1. If it already exists, delete WidgetDevelopment

2. Click here to view the SQL creation script

(/support/SQL_Source_Control/help/2.0/WidgetDevScript.sql) for the database.

3. Copy the script, paste it into a query window in SQL Server Management Studio, and

run it.

The database and its schema are created.

Worked example: Team Foundation Server (TFS)

/SupportCenter/Content/SQL_Source_Control/knowledgebase/SoC_Using_TFS2012
/support/SQL_Source_Control/help/2.0/WidgetDevScript.sql

© Red Gate Software Ltd 14

2. Link the database to source control

Linking associates the database with a location in source control.

That location must be an existing, empty folder.

We will create a folder and link the database to that location.

Create a folder in source control

1. Open Visual Studio if it is not already running, and in the Team Explorer pane, under

the server you are using, double-click Source Control

The Source Control Explorer tab is displayed:

2. In the Folders pane, browse to your source control location.

3. In the file list, right-click, and click New Folder

A folder is created. Name it WidgetDev

Note that in some circumstances, the option to create a new folder is not available.

If this occurs, in the Folders pane, right click your source control location, and click

Get Latest.

Once the local copy has updated, the option to create a folder becomes available.

4. Right-click WidgetDev, and click Check In Pending Changes

The Check In dialog box is displayed.

5. Type a comment, and click Check in

The folder is committed to source control.

© Red Gate Software Ltd 15

Create a link to source control

1. Open SQL Server Management Studio if it is not already open.

2. In the Object Explorer, select the WidgetDevelopment database, right-click, and

click Link database to source control

The SQL Source Control Setup tab is displayed.

3. Click Create new link to source control

The Create Link to Source Control dialog box is displayed:

4. Under Source control system, on the left-hand side, ensure Team Foundation

Server is selected:

5. In Server URL, type or paste the URL for the server you are using if it is not already

filled in.

© Red Gate Software Ltd 16

6. In Source Control Folder, type or paste the location of the WidgetDev folder you

created.

Alternatively, click Browse and browse to the location of the folder.

7. Under Development Model, ensure Dedicated is selected.

8. Click Create Link

You may be prompted for login credentials for your source control repository.

A link to source control is created, and SQL Source Control is now able to determine

differences between the database and source control.

The database icon in the Object Explorer changes, indicating that the database is

linked to source control, and that there are changes to commit:

Note that the database objects have not yet been committed to source control.

3. Commit the database objects to source control

To finish source controlling the database, commit the objects:

1. In SQL Source Control, click the Commit Changes tab.

© Red Gate Software Ltd 17

The Commit Changes tab displays a list of all the objects with database versions that

do not match the latest source control version:

Because none of the objects yet have versions in source control, they are all listed.

You can view the creation script for an object by clicking it. The script is displayed in

the Object Differences pane, below the list of objects to commit.

2. In Comment to add on commit, type or paste a comment.

Comments are recommended as they help provide a detailed change history.

In this example, type Initial commit of all objects.

3. Click Commit

SQL Source Control displays a message dialog box showing the progress of the

commit.

When the commit is complete, click OK to close the message box.

The objects are committed to source control and other users can now get the latest

version of the database.

The Object Explorer is updated to show that there are now no outstanding changes to

commit.

© Red Gate Software Ltd 18

4. Get the latest version

Now the database is in source control, another user can get the latest version, and begin

making development changes.

They create a new database, link it to source control, and update it with the latest version

of all the objects.

Linking the database

1. In SQL Server Management Studio, create a new database, and call it

WidgetDevelopment

2. In the Object Explorer, ensure WidgetDevelopment is selected. On the Setup tab,

click Link to a database already in source control.

The Link Database to Source Control dialog box is displayed.

3. Under Source control system, on the left hand side, ensure Team Foundation

Server is selected.

4. In Server URL, type or paste the URL for the server you are using if it is not already

filled in.

5. In Source Control Folder, type or paste the location of the WidgetDev folder.

Alternatively, click Browse and browse to the location of the folder.

6. Click Link

You may be prompted for login credentials for your source control repository.

A link to the repository is created, and SQL Source Control is able to determine

differences between the database and the repository.

However, the database has not yet been updated with the objects from source

control.

Getting the latest version

1. Click the Get Latest tab.

© Red Gate Software Ltd 19

Because you do not yet have any of the objects in your database, all the objects in

WidgetDevelopment are listed here:

2. Ensure all of the objects are selected.

3. Click Get Latest

A progress dialog box is displayed while SQL Source Control updates the database.

The database is updated to the latest version.

5. Make development changes

Development proceeds normally, and the database is modified.

A column is changed in the table Widgets, to allow longer widget descriptions. This

change is committed to source control.

1. In SQL Server Management Studio, open a new query window, and type or paste the

following SQL statement:

USE WidgetDevelopment

GO

ALTER TABLE [dbo].[Widgets] ALTER COLUMN [Description] [nvarchar] (100)

2. Click Execute or press F5

The script runs; the database is updated.

© Red Gate Software Ltd 20

3. SQL Source Control detects the change to the database, and highlights the affected

object in the Object Explorer:

You can now commit the change.

6. Commit the development changes to source control

1. In the Object Explorer, right click the table Widgets, and click Commit changes to

source control

© Red Gate Software Ltd 21

The Commit changes tab is displayed:

The change to the table Widgets is listed as an edit you can commit.

The Object Differences pane shows the difference between your database version, and

the latest version in source control.

2. In Comment to add on commit, type or paste a comment.

In this example, type Modified Description column

3. Click Commit

SQL Source Control displays a message dialog box that shows the progress of the

commit.

When the commit is complete, click OK to close the message box.

Your change is committed to source control. The Commit Changes tab lists no objects

with changes to commit, and no objects are highlighted in the Object Explorer.

Other users can now get the latest version of the table.

© Red Gate Software Ltd 22

You can use SQL Source Control with any source control system with a command line

interface. This example demonstrates how to set up using SQL Source Control with the

Mercurial source control system.

The example uses:

 The Mercurial (http://mercurial.selenic.com/) source control system

 The TortoiseHg (http://tortoisehg.bitbucket.org/) client for Mercurial

In the example, the Magic Widget Company has a SQL Server database. This database

contains a number of tables, views, stored procedures, and other database objects. The

Magic Widget Company's development team wants to begin working on an update to this

database. They have already created a copy of the production database, as a baseline to

develop against.

They now need to source control the development database, so that each developer can

work on their own dedicated copy.

This example has 6 steps:

1. Set up the database (page 4)

2. Link the database to source control (page 22)

3. Commit the database objects to source control (page 7)

4. Get the latest version (page 27)

5. Make development changes (page 10)

6. Commit the development changes to source control (page 11)

1. Set up the database

This worked example uses the WidgetDevelopment database.

To create the database on your SQL Server:

1. If it already exists, delete WidgetDevelopment

2. Click here to view the SQL creation script

(/support/SQL_Source_Control/help/2.0/WidgetDevScript.sql) for the database.

3. Copy the script, paste it into a query window in SQL Server Management Studio, and

run it.

The database and its schema are created.

2. Link the database to source control

Linking associates the database with a location in source control.

That location must be an existing, empty folder.

Worked example: Mercurial

http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/
/support/SQL_Source_Control/help/2.0/WidgetDevScript.sql

© Red Gate Software Ltd 23

We will create a working folder and link the database to that location.

Create a working folder

To create an empty Mercurial working folder:

1. In a Windows Explorer window, right-click, and from TortoiseHg, select Create

Repository Here:

2. Specify a location for the repository, and click Create.

Alternatively, in the Mercurial command line interface, create a folder, navigate to it, and

type hg init.

If you are linking to a database already in source control, you first need to get the latest

version to a local working folder.

Create a link to source control

1. In SQL Source Control, on the Setup tab, ensure a database is selected, and click

Link database to source control.

© Red Gate Software Ltd 24

The Link to Source Control dialog box is displayed:

2. Under Source control system, on the left-hand side, select More:

3. Type, or browse to, the location of your working folder.

4. Select the config file for your source control system.

In this example, select Mercurial.

A config file is an XML file containing command line hooks, that let you automate

source control operations (Add, Edit, Delete, etc) for different source control systems.

For information on the commands in the config file, see Working with config files

(page 52)

When you first link a database to source control, the config file you select is

committed to the working folder. Note that:

© Red Gate Software Ltd 25

 if you make any changes to a config file in a working folder, you must commit the

changes using your source control system.

 if you remove the config file from your working folder, you may encounter errors

using SQL Source Control.

5. Select a development model.

For more information, see Database development models (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_So

urce_Control\articles\SSC_Development_Models.htm)

6. Click Link.

The database is linked to source control.

The database icon in the Object Explorer changes to show that the database is linked:

Note that linking only associates the database with a location in source control.

3. Commit the database objects to source control

To finish source controlling the database, commit the objects:

1. In SQL Source Control, click the Commit Changes tab.

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm

© Red Gate Software Ltd 26

The Commit Changes tab displays a list of all the objects with database versions that

do not match the latest source control version:

Because none of the objects yet have versions in source control, they are all listed.

You can view the creation script for an object by clicking it. The script is displayed in

the Object Differences pane, below the list of objects to commit.

2. In Comment to add on commit, type or paste a comment.

Comments are recommended as they help provide a detailed change history.

In this example, type Initial commit of all objects.

3. Click Commit

SQL Source Control displays a message dialog box showing the progress of the

commit.

When the commit is complete, click OK to close the message box.

The objects are committed to source control and other users can now get the latest

version of the database.

The Object Explorer is updated to show that there are now no outstanding changes to

commit.

© Red Gate Software Ltd 27

4. Get the latest version

Now the database is in source control, another user can get the latest version, and make

development changes.

They create a new database, link it to source control, and update it with the latest version

of all the objects.

Creating a clone of the database in source control

Before you can link the database, you need to get the latest version to a local working

folder. You can do this by creating a clone of the database already in source control:

1. In a Windows Explorer window, right-click, and from TortoiseHg, select Clone:

2. Specify the location of the database working folder in source control, and a location

for the local working folder.

3. Click Clone.

Linking the database

1. In SQL Server Management Studio, create a new database, with the name

WidgetDevelopment

2. In the Object Explorer, ensure WidgetDevelopment is selected. On the Setup tab,

click Link database to source control

The Link Database to Source Control dialog box is displayed.

3. Under Source control system, on the left hand side, ensure More is selected.

4. Type, or browse to, the location of the local working folder.

The Mercurial config file in the working folder is selected automatically.

5. Click Link.

A link to the repository is created, and SQL Source Control is able to determine

differences between the database and the repository.

However, the database has not yet been updated with the objects from source

control.

© Red Gate Software Ltd 28

Getting the latest version

1. Click the Get Latest tab.

Because you do not yet have any of the objects in your database, all the objects in

WidgetDevelopment are listed here.

2. Ensure all of the objects are selected.

3. Click Get Latest.

A progress dialog box is displayed while SQL Source Control updates the database.

The database is updated to the latest version.

5. Make development changes

Development proceeds normally, and the database is modified.

A column is changed in the table Widgets, to allow longer widget descriptions. This

change is committed to source control.

1. In SQL Server Management Studio, open a new query window, and type or paste the

following SQL statement:

USE WidgetDevelopment

GO

ALTER TABLE [dbo].[Widgets] ALTER COLUMN [Description] [nvarchar] (100)

2. Click Execute or press F5

The script runs; the database is updated.

© Red Gate Software Ltd 29

3. SQL Source Control detects the change to the database, and highlights the affected

object in the Object Explorer:

You can now commit the change.

6. Commit the development changes to source control

1. In the Object Explorer, right click the table Widgets, and click Commit changes to

source control

© Red Gate Software Ltd 30

The Commit changes tab is displayed:

The change to the table Widgets is listed as an edit you can commit.

The Object Differences pane shows the difference between your database version, and

the latest version in source control.

2. In Comment to add on commit, type or paste a comment.

In this example, type Modified Description column

3. Click Commit

SQL Source Control displays a message dialog box that shows the progress of the

commit.

When the commit is complete, click OK to close the message box.

Your change is committed to source control. The Commit Changes tab lists no objects

with changes to commit, and no objects are highlighted in the Object Explorer.

Other users can now get the latest version of the table.

© Red Gate Software Ltd 31

Before you can commit changes to a database, you need to link it to SQL Source Control.

Linking associates a database with a location in source control, allowing SQL Source

Control to monitor changes, and manage migration scripts.

When you link, you tell SQL Source Control if a database is shared, so it can alert you to

any conflicts or issues with the shared database development model.

For more information, see Database development models (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Sourc

e_Control\articles\SSC_Development_Models.htm).

When linking a database, you have two options:

 Link the database to source control

This is used to source control a database for the first time; to associate your version

of a database with one that is already source controlled; or to get a new database

from source control.

 Use the evaluation repository

This creates a local Subversion repository on your computer, so you can evaluate SQL

Source Control even if you do not have source control set up.

For more information, see Using the evaluation repository (page 67).

To link a database to source control:

1. In SQL Source Control, on the Setup tab, ensure a database is selected, and click

Link to source control.

The Link Database to Source Control dialog box is displayed:

Linking a database to source control

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm

© Red Gate Software Ltd 32

2. On the left hand side, select your source control system; either Subversion (SVN),

Team Foundation Server (TFS), Vault, More (for custom setup, including Perforce, Git,

and Mercurial) or Just Evaluating.

3. Provide details for the source control location you want to link the database to.

For Subversion:

Type or paste the URL for your Subversion repository.Type or browse to the

location of the folder you are linking to.

For Team Foundation Server:

Type or paste the URL of your Team Foundation Server and the port number to

connect to that server; type or browse to the location of the Team Project and

solution you want to associate with the database.

For Vault

Type or paste the URL of your Vault server and your repository name; Type or

browse to the location of your database folder.

For other source control systems

Type or browse to the location of your working folder, then select the config file

you are using.

For more information, see Working with config files (page 52).

If you are creating a new link you can create a new folder by clicking Browse,

choosing a location, and clicking Create Folder

4. Tell SQL Source Control if the database is shared.

If you are linking to a database that will be used by multiple developers, ensure the

This is a shared database radio button is selected.

For more information, see Database development models (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_So

urce_Control\articles\SSC_Development_Models.htm).

5. Specify a location for your migration scripts repository.

Migration scripts are customizable change scripts, re-used in deployment. They are

stored in source control in a separate folder to your database schema.

For more information on migration scripts, see Working with migration scripts.

6. Click Link

The database is linked to source control.

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Source%20Control&c=SQL_Source_ControlarticlesSSC_Development_Models.htm

© Red Gate Software Ltd 33

The database icon in the Object Explorer changes to show that the database is linked:

Note that linking only associates the database with a location in source control.

If you are creating a new link, the database objects are not yet source controlled.

If you are linking to an existing version, your database has not yet been updated to that

version.

To commit the objects or get the latest version, next go to either the Commit Changes

tab or the Get Latest tab.

© Red Gate Software Ltd 34

Committing a change updates source control with that change.

When you make changes to a database that is linked to source control, SQL Source

Control highlights affected objects in the Object Explorer:

Committing changes

© Red Gate Software Ltd 35

To update source control with your changes, click the Commit Changes tab:

The Commit Changes tab lists all the objects in your database that anyone has made

changes to.

To commit changes:

1. Select the objects you want to commit.

2. Optionally type or paste a comment.

3. Click Commit

A progress dialog box is displayed while SQL Source Control commits the changes to

your source control system.

Click OK to close the dialog box.

Source control is updated with your changes.

You can also commit changes by right-clicking an object, folder, or database in the Object

Explorer, and clicking Commit changes to source control. The Commit Changes tab

is displayed. The objects you clicked selected to commit.

© Red Gate Software Ltd 36

Integrating with bug tracking systems

SQL Source Control enables you to integrate your database changes with a bug or issue

tracking system (for example Jira, or FogBugz), or the project management features of

Team Foundation Server. It does this by letting you associate a commit with an SVN bug

ID or TFS work item.

For more information, see: Using SVN Bug IDs & TFS Work Items (page 51)

© Red Gate Software Ltd 37

SQL Source Control lets you source control your static (lookup/reference) data. Static

data is the non-transactional data an application may depend on. It typically does not

change frequently; an example would be a table of US states.

To source control data, first link it to source control, then commit it.

Linking associates a table's data with source control, and means that subsequent data

changes are detected, and static data can be shared across the team.

To source control a table's data:

1. In the Object Explorer, right-click the database or table with data you want to source

control.

2. Select Other SQL Source Control Tasks, then click Link/Unlink Static Data

3. The Link/Unlink Static Data dialog box is displayed:

You can see a list of the tables in the database and select the ones you want to link to

source control.

Note that you can only source control data in tables with a valid primary key.

The primary key is used as the comparison key (/supportcenter/Content?p=SQL Data

Compare&c=SQL_Data_Compare/help/9.0/9067.htm&toc=SQL_Data_Comp

are/help/9.0/toc1419819.htm) to identify corresponding rows.

4. Select the tables you want to link and click Save and close

A file for the table's data has now been created, but the data itself has not yet been

committed. To commit the data, commit the resulting Data Link change on the

Commit Changes tab.

Source controlling data

/supportcenter/Content?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/9.0/9067.htm&toc=SQL_Data_Compare/help/9.0/toc1419819.htm
/supportcenter/Content?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/9.0/9067.htm&toc=SQL_Data_Compare/help/9.0/toc1419819.htm
/supportcenter/Content?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/9.0/9067.htm&toc=SQL_Data_Compare/help/9.0/toc1419819.htm

© Red Gate Software Ltd 38

5. On the Commit Changes tab, ensure all Data Link changes are selected, optionally

type a comment, and click Commit

The data is committed to source control.

Note that committing and getting the latest version of data can be slow. It is therefore

recommended only to source control static (lookup) data.

© Red Gate Software Ltd 39

If an object has a more recent source control version than the version currently in the

database, you can get that version on the Get Latest tab:

To get the latest version of an object:

1. On the Get Latest tab, select the objects you want to update to the latest version

2. Click Get Latest

A progress dialog box is displayed while SQL Source Control updates the database.

The database is updated to the latest version.

You can also get the latest version by right-clicking an object, folder, or database in the

Object Explorer, and clicking Get latest changes from source control. You are taken

to the Get Latest tab, where the objects you clicked are selected.

Note that if you are using a shared database, you never need to get the latest version.

This is because the shared database is always up to date with everyone's changes.

Getting the latest version

© Red Gate Software Ltd 40

You can use SQL Source Control to view the log or history information for a database or

database object from within SQL Server Management Studio.

To view the logs / history, in SQL Server Management Studio, in the Object Explorer,

right-click the database or object and click Show History:

Viewing source control logs / history

© Red Gate Software Ltd 41

The History dialog box is displayed:

The History dialog box shows:

 Each version; this is the SVN revision, or TFS changeset

 The author, date, and comment associated with each commit

 Which objects changed in each commit

 The SQL differences for each object

You can use the History dialog box to get a specific version of the database (page 42)

Note that you cannot view history information for databases linked to source control

using command line support.

© Red Gate Software Ltd 42

You can update your database to a specific version using the History dialog box (page 40)

Note that when you do this, the current database schema (and any data you have source

controlled) is overwritten with the version you selected.

Getting a specific version within SQL Source Control requires SQL Server Management

Studio Integration Pack and SQL Compare 8.50 or later (http://www.red-

gate.com/products/sql-development/sql-compare/)

Alternatively, if you do not have SQL Server Management Studio Integration Pack

installed, you can manually create a local copy using your source control system, and

synchronize it with the database using SQL Compare (http://www.red-

gate.com/products/sql-development/sql-compare/)

Getting a specific version from the History dialog box

When you get a version form the History dialog box, SQL Compare is used to update the

target database.

To get a specific version:

1. On the History dialog box, select the version you want to get.

2. Click Update to this version with SQL Compare

A progress dialog box is displayed while the details of the version you selected are

determined.

3. A SQL Compare project launches with the version you selected set as the source, and

the database as the target:

Getting a specific version

http://www.red-gate.com/products/sql-development/sql-compare/
http://www.red-gate.com/products/sql-development/sql-compare/
http://www.red-gate.com/products/sql-development/sql-compare/
http://www.red-gate.com/products/sql-development/sql-compare/

© Red Gate Software Ltd 43

4. To update the database, perform the comparison, ensure all objects you want to

update are selected, and run the synchronization wizard.

For more information, see Worked example: Comparing and synchronizing two databases

http://www.red-

gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc

_WorkedExampleCompareAndSync.htm&toc=SQL_Compare/help/9.0/toc141374.ht

m, in the SQL Compare documentation.

Getting a specific version manually

If you do not have SQL Server Management Studio Integration Pack installed, you can get

a specific version using your source control system and SQL Compare.

Example: getting a specific revision with TortoiseSVN

This example creates a local copy of the revision, and synchronizes the database using

SQL Compare:

1. Check out the latest version to a new folder.

2. Right-click the folder, and from the TortoiseSVN menu, select Show log

The Log Messages dialog box is displayed.

3. Select the revision you want to get, right-click, and click Revert to this revision

4. A confirmation dialog box is displayed. Click Yes

The folder of scripts is updated to the revision you selected.

5. Using SQL Compare, set the scripts folder as the source for a comparison, and the

database as the target, then compare and synchronize.

The database is updated to the revision you selected.

Example: getting a specific changeset with TFS

This example updates the TFS local copy to a specific changeset, and synchronizes the

database using SQL Compare:

1. In Visual Studio, in the Source Control Explorer tab, select the database, right-

click, and click Get Specific Version

The Get dialog box is displayed.

2. Under Version, in Type select Changeset

3. Type the changeset number, or click the browse button to display the Find

Changesets dialog box, and select the changeset you want.

4. Click Get

The local scripts folder has been updated to the changeset you selected.

5. Using SQL Compare, set the local scripts folder as the source for a comparison, and

the database as the target, then compare and synchronize.

The database is updated to the revision you selected.

http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_WorkedExampleCompareAndSync.htm&toc=SQL_Compare/help/9.0/toc141374.htm
http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_WorkedExampleCompareAndSync.htm&toc=SQL_Compare/help/9.0/toc141374.htm
http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_WorkedExampleCompareAndSync.htm&toc=SQL_Compare/help/9.0/toc141374.htm
http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_WorkedExampleCompareAndSync.htm&toc=SQL_Compare/help/9.0/toc141374.htm

© Red Gate Software Ltd 44

You can use SQL Source Control and SQL Compare (http://www.red-

gate.com/products/SQL_Compare/index.htm) to deploy a database from source control to

a server.

You can also use the SQL Server Management Studio Integration Pack add-in to make

schema and data deployment simpler.

Deploying with SQL Server Management Studio Integration Pack

To deploy a database schema, in the Object Explorer, right-click a database, select

Schema Compare/Deploy, and click Set as Source

The SQL Server Management Studio Integration Pack Schema Compare/Deploy tab is

displayed:

You can deploy the current database version or specify a version from source control.

You can deploy to a target database, create a new database, or create a change script to

update a target source control version.

Deploying a database from source control

http://www.red-gate.com/products/SQL_Compare/index.htm
http://www.red-gate.com/products/SQL_Compare/index.htm

© Red Gate Software Ltd 45

For more information, see Getting started with the add-in (http://www.red-

gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/ss
msip_getting_started.htm&toc=SQL_Compare/help/9.0/toc1413764.htm)

Deploying without SQL Server Management Studio Integration Pack

To deploy a database:

1. Create a local copy of the scripts folder

2. Migrate the local copy to the target server using SQL Compare

Optionally, you can also deploy any relevant static data using SQL Data Compare.

In this example the database WidgetDev is already in source control.

The example uses the SQL Compare and Subversion command line interfaces.

It is also possible to deploy the database using the SQL Compare graphical user interface,

and a source control client such as TortoiseSVN (http://tortoisesvn.net/downloads)

1) Create a local copy of the database

At a command prompt, type:

cd C:\program files\subversion\bin

svn update http://<your repository path>/WidgetDev "C:\WidgetDevScripts"

Where:

 http://<your repository path>/WidgetDev is the URL for the database in your

Subversion repository

 "C:\WidgetDevScripts" is the file path for the directory where the local copy will be
created

A local copy of the scripts folder is created. This is a Subversion working copy, and is

associated with the Subversion repository.

2) Migrate the local copy to the target server

At a command prompt, type:

cd C:\program files\red gate\SQL Compare 8

 /sqlcompare /scr1:"C:\WidgetDevScripts"

 /S2:WidgetServer /U2:<username> /P2:<password>

 /db2:"WidgetTest"

 /sync

Where:

http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/ssmsip_getting_started.htm&toc=SQL_Compare/help/9.0/toc1413764.htm
http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/ssmsip_getting_started.htm&toc=SQL_Compare/help/9.0/toc1413764.htm
http://www.red-gate.com/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/ssmsip_getting_started.htm&toc=SQL_Compare/help/9.0/toc1413764.htm
http://tortoisesvn.net/downloads

© Red Gate Software Ltd 46

 /scr1:"C:\WidgetDevScripts" specifies the local copy, WidgetDevScripts, as the source
for a SQL Compare synchronization

 /S2:WidgetServer /U2:<username> /P2:<password> specify the server, user name,

and password you are using

 /db2:WidgetTest specifies WidgetTest as the target of a SQL Compare synchronization

 /sync performs the SQL Compare synchronization, making schema of WidgetTest the

same as the schema in WidgetDevScripts

The database is updated. Its schema is now the same as the version you checked out of

source control.

For more information, see Simple examples using the SQL Compare command line

(http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/

9.0/sc_cl_examplesusingthecl.htm&toc=SQL_Compare/help/9.0/toc846154.htm)

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_cl_examplesusingthecl.htm&toc=SQL_Compare/help/9.0/toc846154.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_cl_examplesusingthecl.htm&toc=SQL_Compare/help/9.0/toc846154.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_cl_examplesusingthecl.htm&toc=SQL_Compare/help/9.0/toc846154.htm

© Red Gate Software Ltd 47

SQL Source Control enables you to undo changes you have made to a database, but not

yet committed to source control.

To undo a change:

1. In the Object Explorer, select the object, folder, or database that has changes you

want to undo.

2. Right-click, select Other SQL Source Control Tasks and click Undo changes

The Undo Changes dialog box is displayed:

3. Select the objects with changes you want to undo, and click Undo Changes

A progress dialog box is displayed while SQL Source Control runs the script to undo

the changes.

4. Close the dialog box when the undo is complete.

The changes are undone.

Alternatively, right-click an object on the Commit Changes tab, and click Undo Changes

Changes you cannot undo

The most common types of change SQL Source Control cannot undo are:

 Committed changes

You can only use SQL Source Control to undo changes you have not committed. To

undo changes that have been committed, use SQL Server Management Studio

Integration Pack to update the database to a specific version (page 42) or use your

source control system.

Undoing changes

© Red Gate Software Ltd 48

 Static data changes

You cannot currently undo a data link or a data edit. To stop source controlling a

table's data, right-click it in the object explorer, and click Link/Unlink Static Data

On the Link/Unlink Static Data dialog box, you can choose to stop source controlling

the table's data.

 Dropped data

If you drop a table or column that contained data, the data is not restored when you

undo the drop.

 NOT NULL columns

If you drop a NOT NULL column from a table that contained data, undoing the drop

will fail if the column does not have a default value.

© Red Gate Software Ltd 49

Conflicts occur when the latest version of an object in source control and the latest

version in the database are incompatible. Conflicted objects cannot be committed or

retrieved until the conflict has been resolved.

This happens if two people modify the same object.

When a conflict occurs, the Conflict to resolve bar is displayed in the Object Differences

pane:

To resolve a conflict, choose either:

 Keep mine

Your changes are committed to source control.

This replaces any changes to the latest source control version that are not present in

your database version.

Or

Conflicts

© Red Gate Software Ltd 50

 Take theirs

Your changes are discarded, and the database is updated to the latest source control

version.

Merging

Note that merging is not currently supported.

To merge changes from two conflicting versions of an object, resolve the conflict, and

then manually edit the object to include the changes from the other version.

To make this easier, you can copy either version of an object's creation script from the

Object Differences pane, and paste it into a new query window.

To avoid conflicts, you are recommended always to get the latest version of an object

before modifying it.

Conflicts involving data

If an object has both schema and data changes, you must commit or get the latest

schema and data changes at the same time. You cannot commit only the data changes.

This is because data changes may fail without the associated schema changes.

So if an unconflicted data change is associated with a conflicted object, you cannot

commit or get the data change without first resolving the schema conflict.

© Red Gate Software Ltd 51

You can use SQL Source Control to associate your changes with an SVN bug ID or a TFS

work item.

This allows you to better integrate database changes with a bug or issue tracking system,

or the project management functionality of Team Foundation Server.

Currently, SQL Source Control only supports this by adding the bug ID or work item

number to the comment you make when committing changes.

SVN Bug IDs

SVN bug IDs are enabled using bugtraq properties. These let you add commit hooks to

make SVN parse log messages for bug or issue numbers, and relate them to your issue

tracking system.

For more information on setting up SVN Bug IDs, see TortoiseSVN: Integration with an

issue tracker (http://tortoisesvn.net/issuetracker_integration)

To associate a commit with a bug or issue, include the issue number in the commit

comment, with a # symbol.

For example: This commit addresses issue #100

TFS work items

TFS work items are a way of tracking pieces of work in a development project. Each work

item has a number, and this number can be included in your commit comment to either

associate the commit with a work item, or to mark it as resolving a work item.

To associate a commit with a work item include #A[Work Item number] in the Comment.

For example: #A106

To resolve a work item include #R[Work Item number] in the Comment.

For example: #R106

Note that the #A106 and #R106 portion will not appear in the Commit Comment

recorded on the TFS Server.

Using SVN bug IDs & TFS work items

http://tortoisesvn.net/issuetracker_integration

© Red Gate Software Ltd 52

SQL Source Control provides preset XML config files that enable you to automate source

control operations for source control systems with a command line interface.

Commands in the config files

The preset config files include the following commands:

Get Latest

Updates the local working folder with latest version in source control.

Commit

Commits all changes in the local working folder to source control.

Add

Adds new files to the local working copy. Changes can then be committed to source

control using the Commit command.

Edit

Makes the local working copy of the file(s) available for editing. Changes can then be

committed to source control using the Commit command.

Delete

Deletes the file(s) from the local working copy. Changes can then be committed to source

control using the Commit command.

Revert

Undoes changes if an error occurs during a commit.

Creating a custom config file

To create a config file for your source control system:

1. On the Link to Source Control dialog box, select More as your source control system.

2. Click Manage Config Files.

3. Open Template.xml in your XML editor, and specify commands and verification codes

for the source control actions you want to automate. Help is provided inside

Template.xml.

Working with config files

© Red Gate Software Ltd 53

Note: Make sure you specify the name you want to use for the config file in the

<Name> tag. For example:

<Name>Darcs</Name>

To include multiple operations in a single command, separate them with &&. For

example:

accurev add -c -d ($Files) && accurev keep -m && accurev promote –k

1. Save your changes as a new XML file in the default config files folder:

%USERPROFILE%\AppData\Local\Red Gate\SQL Source Control

3\CommandLineHooks

Your config file is now available to select in SQL Source Control.

© Red Gate Software Ltd 54

You can create filters to exclude objects from SQL Source Control.

When you exclude an object with a filter, it is not shown on the Commit Changes tab, the

Get Latest tab, or the Undo Changes dialog box. This means you can never commit, get,

or undo an excluded object.

This is useful, for example, if there is a set of objects that you never want to commit, or

consider for source control purposes.

Creating and editing filters

There are two ways to create or edit your filter:

 In the Object Explorer right-click a database, folder, or object, select Other SQL

Source Control Tasks, and click Edit Filter Rules...

The Edit Filter Rules dialog box is displayed.

 On the Commit Changes or Get Latest tab, right-click an object in the list of changes,
and click Edit Filter Rules...

The Edit Filter Rules dialog box is displayed.

The Edit Filter Rules dialog box lets you specify exclusion or inclusion conditions for

individual objects or all object types:

Using filters to exclude objects

© Red Gate Software Ltd 55

You can exclude object types using the check boxes in the left-hand pane, or build more

complex conditions by specifying AND clauses and OR conditions in the right-hand pane.

When you create a filter rule, its conditions are displayed in the left-hand pane, under the

name of the object type it applies to:

To clear the filter rule for an object type click the (Clear) button next to its name.

Sharing filters

You can commit your filter to source control, and get the latest version when it changes.

This is useful for teams that want to exclude a set of objects across an entire

development project.

© Red Gate Software Ltd 56

When you create or edit a filter, SQL Source Control shows it on the Commit Changes

tab:

You can see the differences between your current filter and the version in source control.

Example: excluding objects with a specific name or owner

If you never want to commit changes to any tables that have names beginning with

Marketing, or any owned by the schema Marketing, regardless of their names:

1. In the Object Explorer, right-click the database, select Other SQL Source Control

Tasks, and click Edit Filter Rules...

The Edit Filter Rules dialog box is displayed.

2. In the box, ensure Exclude if is selected

3. Under Property, select Object name.

4. Under Operator, select Begins with.

5. Under Value, type Marketing.

© Red Gate Software Ltd 57

6. Click

A new OR condition becomes available.

7. Under Property, select Schema name.

8. Under Operator, select Equals.

9. Under Value, type Marketing.

10. Click Save and close.

The filter is applied. All objects owned by the schema Marketing, or with names that

begin with Marketing are excluded by SQL Source Control.

You can commit the filter if you want to share it with the rest of the development team.

© Red Gate Software Ltd 58

Many development projects involve creating branches, for a feature, a release, or some

other development milestone. In some source control systems, branches are referred to

as "forks". A branch is essentially a copy of the code base that shares its history.

Branches diverge as required, and the process of reincorporating the changes from a

branch is referred to as merging.

Development projects typically have a "trunk" which is the main code base, and branches

which diverge from it.

For more information see:

 Branching and Merging with Team Foundation Server (http://msdn.microsoft.com/en-
us/library/ms181423%28v=vs.80%29.aspx)

 Branching and Merging with Subversion (http://svnbook.red-

bean.com/en/1.0/ch04.html)

For a general introduction to source control concepts, see:

 Version Control by Example (http://www.ericsink.com/vcbe/) by SourceGear founder

Eric Sink.

SQL Source Control allows you to work with branches of a database, although it does not

currently provide the means to create a branch or merge branches in SQL Server

Management Studio.

To branch with SQL Source Control you must create the branch using your source control

system, and then link to the appropriate branch.

For detailed information on branching, refer to the documentation for your source control

system.

Working with branches

Once you have created a branch in source control, you are ready to work on it in SQL

Server Management Studio with SQL Source Control.

There are two approaches to working with branches:

Un-link and re-link to the branch

Here, you continue working on the same database in SQL Server Management Studio, but

link it to the branch in your source control system.

Once the branch is created, un-link it in SQL Source Control, then link the database to

source control again. When you link, specify the location of the branch in source control.

Branching and merging

http://msdn.microsoft.com/en-us/library/ms181423%28v=vs.80%29.aspx
http://msdn.microsoft.com/en-us/library/ms181423%28v=vs.80%29.aspx
http://svnbook.red-bean.com/en/1.0/ch04.html
http://svnbook.red-bean.com/en/1.0/ch04.html
http://www.ericsink.com/vcbe/

© Red Gate Software Ltd 59

Create a new database for the branch

Here, you create the branch in your source control system, and create a new database to

link with it in SQL Server Management Studio.

Create a new empty database, and link it to source control in SQL Source Control. When

you link, specify the location of the branch in source control, then on the Get Latest tab,

update the database with the latest version from source control.

Merging

SQL Source Control does not provide automatic or line-by-line merging functionality. You

can use SQL Source Control or SQL Compare

(/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/SC_Gettin

g_Started.htm&toc=SQL_Compare/help/9.0/toc.htm) to merge at an object level,

but not to choose line-by-line changes.

When you merge with SQL Source Control or SQL Compare, you choose a version of each

object to keep; for example you might keep the trunk version of a table, and the branch

version of a view.

There are three approaches to merging:

Merging with your source control system

You can manually merge the branch changes back into the trunk using your source

control system, as you would for application code.

This approach is recommended if the merge is complex, or if there are conflicts. For

example if the same object has been modified in both the branch and the trunk.

When merging manually, you must ensure that referential integrity is maintained.

Otherwise the database could be left in an invalid state.

Your source control system may include auto-merging functionality that simplifies manual

line-by-line merges.

Merging with SQL Source Control

If you do not need to perform a line-by-line merge, you can merge with SQL Source

Control.

To merge branch changes back into the trunk with SQL Source Control:

1. Ensure that in SQL Source Control you have a database linked to the branch in your

source control repository.

2. Get the latest version and commit any outstanding changes.

3. Unlink the database from the branch.

4. Re-link the database to the trunk.

5. Go to the Commit Changes tab.

The tab shows the changes to the branch as changes to commit.

/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/SC_Getting_Started.htm&toc=SQL_Compare/help/9.0/toc.htm
/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/SC_Getting_Started.htm&toc=SQL_Compare/help/9.0/toc.htm

© Red Gate Software Ltd 60

If there are conflicts, choose Keep mine to override the trunk with the objects from

the branch.

6. Commit the changes.

The trunk is updated with the branch changes.

Merging with SQL Compare

If there are no conflicting changes between the branch and the trunk, you can merge

automatically using SQL Compare.

To merge branch changes into the trunk with SQL Compare:

1. In SQL Source Control, ensure you have a database linked to the trunk.

2. Use your source control system to create a local copy of the latest branch version, for

example by performing an SVN checkout.

3. In SQL Compare, create a new project

(/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_wor

king_with_projects.htm&toc=SQL_Compare/help/9.0/toc1413719.htm). Set the

local copy of the branch as the source, and the trunk database as the target.

For more information, see: Setting data sources

(/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_set

ting_data_sources.htm&toc=SQL_Compare/help/9.0/toc1413719.htm)

4. Compare the data sources.

SQL Compare shows the differences between the branch and the trunk.

5. In the Results pane, select the objects from the branch that you want to merge into

the trunk, and run the Synchronization Wizard, to synchronize the data sources

(/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_set

ting_up_synchronization.htm&toc=SQL_Compare/help/9.0/toc1413731.htm)

The trunk is updated with the changes from the branch.

6. In SQL Source Control, on the Commit Changes tab, commit the trunk changes to

source control.

/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_working_with_projects.htm&toc=SQL_Compare/help/9.0/toc1413719.htm
/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_working_with_projects.htm&toc=SQL_Compare/help/9.0/toc1413719.htm
/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_setting_data_sources.htm&toc=SQL_Compare/help/9.0/toc1413719.htm
/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_setting_data_sources.htm&toc=SQL_Compare/help/9.0/toc1413719.htm
/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_setting_up_synchronization.htm&toc=SQL_Compare/help/9.0/toc1413731.htm
/supportcenter/Content?p=SQL%20Compare&c=SQL_Compare/help/9.0/sc_setting_up_synchronization.htm&toc=SQL_Compare/help/9.0/toc1413731.htm

© Red Gate Software Ltd 61

This topic describes how to set up a local Subversion repository using TortoiseSVN, a free

Subversion client for Windows.

Note that you are recommended not to use a local repository. Instead, set up a

Subversion server (page 63)

To download the latest version of TortoiseSVN, see the TortoiseSVN download page

(http://tortoisesvn.net/downloads)

Alternatively, you can use the Subversion command line interface.

For more information, see the Subversion documentation (http://svnbook.red-

bean.com/)

Creating a repository

To create a local repository:

1. Download and install Tortoise SVN.

You may need to restart your computer after installation.

2. In Windows Explorer, browse to or create an empty folder where you want to create

the repository, for example C:\SVNRepository

Setting up a local Subversion repository

http://tortoisesvn.net/downloads
http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

© Red Gate Software Ltd 62

3. Right-click the folder, and in the TortoiseSVN menu, select Create repository here:

The repository is created.

Using the repository

You can now use the repository with SQL Source Control.

The URL for a local repository takes the form:

file:\\\C:\<RepositoryFilePath>

Use this URL to link your database to source control (page 31)

Note that the URL is case sensitive.

© Red Gate Software Ltd 63

This topic provides a simple overview of setting up a Subversion server using VisualSVN

Server (http://www.visualsvn.com/server/), an installation and administration application

for Subversion on Microsoft Windows servers. This topic does not address manual

installation and configuration of Subversion, or installation on non-Windows servers.

For more detailed information on setting up a Subversion server, see:

 Chapter 6 of the Subversion documentation - Server Configuration

(http://svnbook.red-bean.com/en/1.0/ch06.html)

 Chapter 3 of the TortoiseSVN documentation - The Repository

(http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-repository.html)

Installing with VisualSVN Server

VisualSVN Server automates the setup of a Subversion server, and is available both as a

free tool (the Standard Edition), and as the paid Enterprise Edition. The Enterprise Edition

includes Integrated Windows Authentication, as well as richer logging and administration

tools.

This example uses the free version.

To set up SVN, download and run the VisualSVN Server installer on the server you want

to use, then follow the wizard to complete the installation.

You can download the VisualSVN Server installer here

(http://www.visualsvn.com/server/download/)

VisualSVN Server provides an installation getting started guide

(http://www.visualsvn.com/server/getting-started/)

Setting up a Subversion server

http://www.visualsvn.com/server/
http://svnbook.red-bean.com/en/1.0/ch06.html
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-repository.html
http://www.visualsvn.com/server/download/
http://www.visualsvn.com/server/getting-started/

© Red Gate Software Ltd 64

Page 4 of the installation wizard allows you to specify the location where the Subversion

repositories are created, and the type of authentication:

Subversion authentication requires you to set up users and credentials on the Subversion

server.

Windows authentication allows you to use your existing Windows user accounts.

Note that if you are using Windows authentication in VisualSVN Server Standard Edition

(the free version), or Subversion authentication in either edition SQL Source Control may

prompt you to enter your user name and password when linking a database source

control.

© Red Gate Software Ltd 65

At the end of the installation, run the VisualSVN Server Manager:

The Server Manager allows you to set up repositories and configure security.

To set up a repository to use with SQL Source Control:

1. In the Console Tree pane, to the left, right-click Repositories, and click Create New

Repository

The Create New Repository dialog box is displayed.

2. In Repository Name, type a name for the repository.

Optionally, to create the recommended VisualSVN Server directory

(http://www.visualsvn.com/support/topic/00017/) structure in your repository, select

the Create default structure check box.

3. Click OK

The repository is created.

Using the repository with SQL Source Control

To use the repository with SQL Source Control you will need to create a folder for your

database.

To create a folder in the repository:

1. Right click the repository, select New, and click Folder

http://www.visualsvn.com/support/topic/00017/

© Red Gate Software Ltd 66

The Create Folder dialog box is displayed.

2. Specify a name for the folder, and click OK

The folder is created.

To link a database to source control (page 31), you need the URL for the repository.

To find the URL of a repository in VisualSVN Server Manager, right-click the repository,

and click Copy URL to Clipboard

© Red Gate Software Ltd 67

If you do not have a source control system set up, or do not want to use your existing

system to evaluate SQL Source Control, you can use the evaluation repository.

To do this, select the Just Evaluating option when you link a database to source control

(page 31):

For an overview of getting set up quickly, see: SQL Source Control in 5 minutes

(http://www.red-gate.com/products/sql-development/sql-source-control/entrypage/5-

minutes)

Creating an evaluation repository creates a local Subversion repository. You can use this

to source control a database, and get set up in just a few minutes. However, local

repositories have limitations.

Generally, you are recommended to set up a Subversion server (page 63) rather than

using local repositories.

If your are using an evaluation repository, you can migrate it to a Subversion server,

retaining the history. For instruction on doing this, see Moving the evaluation repository

to an SVN server (page 69)

Local repositories are designed to be used by a single user on a single computer. It is

possible to share them by giving multiple users read and write access to the repository

directory. However, this is not recommended.

If you want to use the evaluation repository under a shared development model, you

need to give each user permissions to access the repository directory.

A Subversion server supports the protocols http://, https://, svn://, and svn+ssh:// so it

is easier to set up access for multiple users, security can be stronger, connections may be

faster, and you have more fine-grained control of user permissions.

Using the evaluation repository

http://www.red-gate.com/products/sql-development/sql-source-control/entrypage/5-minutes
http://www.red-gate.com/products/sql-development/sql-source-control/entrypage/5-minutes

© Red Gate Software Ltd 68

For more information, see Accessing a Repository on a Network Share

(http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-repository.html#tsvn-

repository-local-share) in the Tortoise SVN documentation.

http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-repository.html#tsvn-repository-local-share
http://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-repository.html#tsvn-repository-local-share

© Red Gate Software Ltd 69

If you have been using an evaluation repository, or any local SVN repository, you can

migrate it to a Subversion server, and retain all the log/history information.

You can migrate the repository by using VisualSVN Server

(http://www.visualsvn.com/server/), an installation and administration application for

Subversion on Microsoft Windows servers.

VisualSVN Server is available both as a free tool (the Standard Edition), and as the paid

Enterprise Edition. The Enterprise Edition includes Integrated Windows Authentication, as

well as richer logging and administration tools.

This example uses the free version of VisualSVN Server.

The example has three steps:

1. Download and install VisualSVN Server (page 69)

2. Import your evaluation repository (page 69)

3. Unlink and relink the repository in SQL Source Control (page 71)

1. Download and install VisualSVN Server

To set up your SVN server, download and run the VisualSVN Server installer on your

server, then follow the wizard to complete the installation.

For information on installing VisualSVN Server, see Setting up a Subversion server (page

63)

You can download the VisualSVN Server installer here

(http://www.visualsvn.com/server/download/)

2. Import your evaluation repository

To import the contents of an evaluation repository to your new SVN server, you must find

the evaluation repository, copy the files to your server, and then import them using

VisualSVN.

1. First, locate the evaluation repository on your computer.

The evaluation repository location is typically: C:\Users\<user

name>\AppData\Local\Red Gate\SQL Source Control 2\EvaluationRepositories

Alternatively, to find your repository location:

Moving the evaluation repository to an SVN server

http://www.visualsvn.com/server/
http://www.visualsvn.com/server/download/

© Red Gate Software Ltd 70

Open SQL Server Management Studio if it is not already open. In the Object Explorer,

select the database you want to import, and on the Setup tab of SQL Source Control,

where it says Linked to, right-click the red text and click Copy:

The repository location is copied to the clipboard.

2. Browse to the repository location, and copy the repository you want to move to a

location on your server.

3. On the server, open the VisualSVN Server Manager if it is not already open, and in the

Console Tree pane, to the left, right-click Repositories, select All Tasks, and click

Import Existing Repository:

© Red Gate Software Ltd 71

The Import Existing Repository dialog box is displayed:

4. In Existing Repository Location, paste the location of the repository copy.

A new repository name is supplied automatically. If you do not want to use the default

name, type a new one.

5. Click OK.

The repository is created. The new repository contains any history information from

the evaluation repository.

3. Unlink and relink the repository in SQL Source Control

To start using the new repository with SQL Source Control, unlink the evaluation

repository and link the new one:

1. In the VisualSVN Server Manager, right-click the new repository, and click Copy URL

to Clipboard

2. In SQL Server Management Studio, ensure the database is selected in the Object

Explorer, and on the Setup tab of SQL Source Control, click Unlink database

A dialog box is displayed asking you to confirm the unlink.

3. Click Yes

The database is unlinked.

4. On the Setup tab, click Link database to source control

The Link to Source Control dialog box is displayed.

5. In Repository URL, paste the URL of your new repository.

6. Under Development Model, select your development model: dedicated, or shared.

7. Click Link

The database is now linked to the new repository on your Subversion Server.

© Red Gate Software Ltd 72

To give feedback or make feature requests for SQL Source Control, click the Feedback

link at the top of the SQL Source Control tab:

We are continuing to develop SQL Source Control; your feedback and error reports help

us decide which features and issues to prioritize for the next release.

So please do let us know about any issues you may encounter.

If SQL Source Control encounters a serious issue, you may see an error report dialog

box:

Please click Send Error Report, and - if possible - provide detailed feedback, as these

reports are extremely valuable to us.

Bug reports and feedback

© Red Gate Software Ltd 73

These error reports may include:

 a stack trace

 your SQL Server and operating system version

 the Windows user you are logged in as, and your domain

This is so we can identify recurrent bugs.

 information from the SQL Source Control logs

In some conditions, this may include information about your database schema.

