
1.
2.

3.
4.

5.
6.

a.
b.

c.

7.

1.

2.

3.

4.

1.
2.
3.

4.

1.
2.

Finding and fixing a memory leak
Before you look for a memory leak, we recommend that you first and .check for large object heap fragmentation use of unmanaged memory

If you are not familiar with memory profiling, you might find it helpful to read before you start.about the .NET heaps

Your approach to finding the source of the leak will depend on whether you have a hypothesis as to what is causing the problem.

If you think you know what is causing the problem

You may already have an idea of the action that might be causing the problem. In this case, use ANTS Memory Profiler to avoid time-consuming trial-and-
error investigations in the code.

Start ANTS Memory Profiler and start profiling your application.
Use your application until the point where you are interested in its memory.

Click .
Cause the action or method to take place (for example, open the dialog box).

Click .
Switch to the and try each of the following approaches to check whether the type that you suspect is the source of the problem:Class List

Type the name of the type which you suspect is causing the problem into the search box.
On the filter panel, click . Select , click , and enter the name of Filter by Reference Kept in memory exclusively by Add class/interface
the type there.
If you know that the class should only be in memory because it is referenced only by one other class, check using the Never referenced

 filter.by
If this procedure does not reveal any problems, continue reading 'Analyzing heap usage', below.

If you do not know what could be causing the problem

Set up ANTS Memory Profiler

Click .

When you see the graph on the timeline increase substantially, click twice, a few seconds Bytes in all heaps
apart.
Continue reading at 'Analyzing heap usage' below.

Analyzing heap usage

Our best advice for analyzing heap usage is to ensure that you perform the analysis methodically, noting the results so that you can check that any
changes made to your code have fixed the problem.

For each suspicious class (see the list below), in turn:

Show the graph.Instance Categorizer
If the class is one of yours, switch to the mode, so you can see the objects this class references.All references
Check how the class is being kept in memory by looking at classes displayed to the left of your selected class. Check especially for any event
handlers referencing your selected class.
If a path looks incorrect, switch to the to show how an instance is referenced along that path.Instance Retention Graph

Suspicious classes are:

The largest classes (see the Summary or Class List)
Classes displayed when the / are applied. Having objects in the Kept in memory exclusively by disposed objects by event handlers filters
latter is an especially good indicator of a leak (or poor coding practice).
Classes which ought not to be displayed when the and/or filters are applied.Survivors in growing classes New objects

Solving the memory leak

Once you have identified a path which is incorrect:

Break the incorrect references in your code
Retest the leak.

For the largest classes, you can jump straight to the categorized references graph from the summary. You do not need to generate the Class
List every time.

https://documentation.red-gate.com/display/AMP7/Checking+for+large+object+heap+fragmentation
https://documentation.red-gate.com/display/AMP7/Checking+unmanaged+memory+usage
https://documentation.red-gate.com/display/AMP7/Memory+management+primer
https://documentation.red-gate.com/display/AMP7/Filtering+by+object+type
https://documentation.red-gate.com/display/AMP7/Filtering+by+reference
https://documentation.red-gate.com/display/AMP7/Filtering+by+reference
https://documentation.red-gate.com/display/AMP7/Working+with+basic+filters
https://documentation.red-gate.com/display/AMP7/Checking+that+a+memory+leak+is+fixed

	Finding and fixing a memory leak

