
Introduction to building .NET Reflector add-ins
.NET Reflector has an extensive add-in framework, and there are plenty of add-ins already available to use as examples of what can be done.

A .NET Reflector add-in is fundamentally a dll/exe assembly file that contains packages. A package is a class that implements the interface, IPackage
which defines a Load and Unload method. An interface is passed during loading, and gives access to a set of services which are IServiceProvider
part of the .NET Reflector object model (the most common of which we'll see below).

Available services

The following table lists the most commonly-used services that can be accessed through the method onGetService IServiceProvider

Servi
ce

Description

IAssemb
lyBrows
er

Maintains the currently selected Code Model object in the property. You can assign a Code Model object like ActiveItem
IMethodDeclaration to the to programatically change the currently selected item in the browser window. ActiveItemChanged ActiveItem
notifies that the selected item has changed.

IWindow
Manager

Manages the application window and pane windows. You can add your own pane windows to the Windows collection which will create an
IWindow hosting frame. ShowMessage can be used to show notification messages to the user.

IComma
ndBarMa
nager

Manages the Reflector menu bar, tool bar and context menus. You can lookup a context menu by its identifier and add items to it.

IConfigu
rationMa
nager

Manages the sections from the Reflector configuration file as a set of IConfiguration objects. Lists of items are represented as properties
named "0?, "1?, "2?, and so on.

IAssemb
lyManag
er

Maintains the list of currently loaded assemblies. LoadFile can be used to load an assembly file from disk. Unload allows you to unload an
assembly from memory. The Assemblies collection holds all the currently loaded assemblies.

ILangua
geMana
ger

Manages formatting modules for different programming languages. The ActiveLanguage property exposes the ILanguage object currently
used for rendering. You can add your own language rendering code by implementing the ILanguage interface. Use RegisterLanguage to
add your add-in to ILanguageManager.

Although the .NET Reflector API exposes more interfaces than this, these are the most commonly used ones.

Building a HelloWorld add-in

A simple "HelloWorld" add-in can be created by implementing the interface.IPackage

The Load method is implemented to ask the for the service, which allows you to communicate with .NET IServiceProvider IWindowManager
Reflector's windowing system. Finally, the method is used to show a message to the user:ShowMessage

using System;
using Reflector;
internal class HelloWorldPackage : IPackage
{
 private IWindowManager windowManager;
 public void Load(IServiceProvider serviceProvider)
 {
 this.windowManager = (IWindowManager) serviceProvider.GetService(typeof(IWindowManager));
 this.windowManager.ShowMessage("Loading HelloWorld!");
 }
 public void Unload()
 {
 this.windowManager.ShowMessage("Unloading HelloWorld!");
 }
}

The code can be compiled into an add-in dll, which is referencing Reflector.exe as a library:

csc.exe / /out:HelloWorld.dll *.cs /r:Reflector.exetarget:library

The add-in can then be copied to your Reflector directory and loaded using the View Add-Ins menu. While this is a very basic add-in, the fundamentals of
the construction and implementation don't change.

http://targetlibrary

Adding items to command bars and context menus

The service allows you to add menu items to the .NET Reflector main menu and context menus. Each sub-menu and context ICommandBarManager
menu is registered in the collection with an identifier name, and the following table lists the most commonly used identifiers:CommandBars

Identifier Description

Tools The tools menu shown as part of the main menu.

Browser.Assembly The context menu for the currently selected assembly.

Browser.Namespace The context menu for the currently selected namespace.

Browser.TypeDeclaration The context menu for the currently selected type declaration.

Browser.MethodDeclaration The context menu for the currently selected method declaration.

Learning more

Thoroughly documenting the .NET Reflector API is something we hope to improve in future.

We currently recommend this series of articles by Jason Haley:

Getting Started with .NET Reflector add-ins
Create your own add-in : The basics
Create your own add-in : More details
Wrapping .NET Reflector

For more examples, see:

.NET Reflector Add-in Tutorial (Peli de Halleux)
Building the .NET Reflector Add-in (Jamie Cansdale)

http://jasonhaley.com/blog/post/2007/10/30/Getting-started-with-Reflector-Addins.aspx
http://jasonhaley.com/blog/post/2007/02/26/Ways-to-use-Net-Reflector-2-Create-your-own-add-ins.aspx
http://jasonhaley.com/blog/post/2007/08/26/Ways-to-use-Net-Reflector-21-Creating-your-own-add-ins.aspx
http://jasonhaley.com/blog/post/2007/10/26/Ways-to-use-Net-Reflector-3-Wrap-it.aspx
http://blog.dotnetwiki.org/ReflectorAddinTutorialBonusHelperClasses.aspx
http://www.codeproject.com/Articles/4503/Building-the-Reflector-Add-In

	Introduction to building .NET Reflector add-ins

