
The instance retention graph
The shows chains of references between GC roots and your selected object.instance retention graph

Start at your selected object and follow the chains of references up towards the GC roots, to identify references that are preventing the garbage collector
from collecting your object.

When you find a reference that shouldn't be there, modify your code to break the reference, and then profile the application again to check the problem is
fixed.

Key

The instance you selected.

GC root object.

The object under this one in the graph is a GC root because it is a GC Handle.

The object under this one in the graph is a GC root because it is on the stack, having been put on the stack
by .bz.d()

The object under this one in the graph is a GC root because it is a member of the static variable Connection
..s_NullBuffer

Group of strongly-connected objects
(see tips below).

Non-disposable instance for which you have source code.

Non-disposable instance for which you do not have source code.

Disposable instance for which you have source code.

Disposable instance for which you do not have source code.

Disposed instance.

The simplest path between these two instances.
(Note that if you break this link, the objects may still be connected by a more complex link.)

Move your mouse pointer over an object to view more information in a tooltip.

Click on a node in the graph to see the properties of a specific instance.

Tips

The instance retention graph only shows the shortest chain of references from each GC root to your selected object. When you break this chain
of references, the object may still be kept in memory by a longer chain of references.
After you have modified your code to break the first chain of references, profile your application again; the instance retention graph updates to
show the chain of references which is now the shortest chain. You will need to modify your code again, to break this chain of references, and
repeat until all the chains of references are broken and the object is no longer in memory.
Objects grouped in a box are strongly connected; every object references every other object in the group (the reference may be direct or indirect).
To remove an object from memory, you do not normally need to break all the references between a GC root and your object: only of the one
references needs to be removed to prevent your object from being kept in memory.

However, the relationship between strongly connected objects is complex, so in this case you may need to break more than one reference to
prevent your object from being held in memory. Break the references one at a time, and take new snapshots each time to check whether your
object is still in memory.
If there is an event handler in the chain of references from a GC root to your object, look at the objects that directly reference the event handler;
these references are often a good point to break the chain of references to your object.
If your graph shows an object which does not appear to be referenced by anything, it may be because this object is on the finalizer queue. The
graph hides finalizer queue GC roots by default, because they do not normally indicate a memory problem. To show these objects on the graph,
clear the option (in the bar above the graph).Hide finalizer queue GC roots
If the graph shows your object is being kept in memory by an object on the finalizer queue, take another memory snapshot. Taking a snapshot
forces the garbage collector to run, so your object should now be removed from memory.

You can't see the properties of an instance if you selected when setting up the profiling Make snapshots faster by leaving out object values
session, or if the snapshot was bigger than 4GB.

	The instance retention graph

