Worked example - Profiling an ASP.NET application

This worked example describes how to profile a sample ASP.NET website called NerdDinner. You can download the original ASP.NET MVC source code
for NerdDinner from CodePlex: in this example, the NerdDinner code has been modified to illustrate a performance problem.

In this example, NerdDinner is installed on the same computer as the one being used to profile it, and can be accessed in a web-browser at http://127.
0.0.1:8010 .

Imagine that the problem with NerdDinner is that it is slow to return results for a search involving a SQL query. Imagine you want to know whether you can
do anything in the application's .NET code to improve the site's performance, before you investigate performance on the database, or spend money to
improve the hardware the site runs on.

There are three main steps:

1. Setup ANTS Performance Profiler
2. Use NerdDinner
3. Analyze the profiler's results

Setting up ANTS Performance Profiler
To set up ANTS Performance Profiler:

1. In the ANTS Performance Profiler settings, on the Application Settings tab, select ASP.NET web application (lIS).
2. Inthe ASP.NET web application (URL) dropdown menu, select the site's URL: http://127.0.0.1:8010.
3. Choose the required profiling mode. Here, we'll use line-level and method-level timings.

For more on profiling modes, see Choosing a profiling mode.

Session settings - ANTS Performance Profiler 8.0 Professional (Beta build 45! 5
—

File Yiew Iools Help

&« URL for ASP.NET web application

~

5 g v
http://localhost:8010 ~
NET executable Show server options @

Windows Store app

Profiling mode @
Attach to .NET 4+ process

Line-level & method-level timings A Highest profiling overhead
- All methods inc. framework =" Most detailed results
I IIS - ASP.NET

15 Express - ASP.NET Chart performance counters @

Web dev. server - ASP.NET % Processor Time

Edit counters @

IIS - SharePoint

Additional profiler options

Windows service [C] Record file /O performance

COM+ server Profile child processes
Enable inlining

Sheriohetioenlicaion Include source code with saved results

XBAP

Start web application in:

@ chrome (defaul) v

Start profilin
p g

0K

4. Select the port on which to profile your application:

® |f you are using IIS 6, 7 or 8, select Unused port and choose a port that is not used by IIS.
IIS will start a new instance of your application on the specified port.
Note that this will not work if your application's code binds to a specific port.

® [fyou are using IIS 5, or if you are using IIS 6+ and your application binds to a specific port, select Original port.
1IS will restart so that the profiler can attach to the port.
Note that restarting IS stops IIS and restarts only the application that you are profiling. Other websites on the same 1S instance will not
be present when IIS restarts.

The port where the application will be profiled is displayed at the bottom of the ANTS Performance Profiler Settings dialog box.
For more on profiling web applications in 1IS, see Profiling ASP.NET applications running on IIS and Troubleshooting IIS profiling.

P Start profiling G
5. Click

6. The web browser you selected launches and loads NerdDinner.

http://nerddinner.codeplex.com/
http://nerddinner.codeplex.com/
https://documentation.red-gate.com/display/APP9/Choosing+a+profiling+mode
https://documentation.red-gate.com/display/APP9/Profiling+ASP.NET+applications+running+on+IIS
https://documentation.red-gate.com/display/APP9/Troubleshooting+IIS+profiling

Fle View Tools Help

Chart counters

v I i :;”'m;w” O seibe

8 9 Procassor Time.

| abookmark while profiing, cick ‘Start
st Live bookmark,

Mo bookmarks are set. To bookmark
the currently selected period, dick
“Bookmark selected region'. To record

Events

Show | & Call tree < Display options:

Select a time region

Drag to select a region on the timeline}

1o display results while profiling

1 Nerd Dinner *
= = €' [1localhost8013 %8 =

@) Getting Starte’ (] Latest Headlines ['] Readability [Imported From Firef.. [] Read Later
@ localhost8013 wants to use your computer's location, Learn more %

Ji. o
[rroomer | vosomer | oo =1 iy
e '
Organ|z|ng the world's nerds Enter your location or View All Upcoming Dinners.

and helping them eat in packs. |

Find a Dinner
4 %) Popular Dinners

25| Road erisl ryoid | W\ e

Connected

[, Aserra Sasearcuevan Orasio

Using Nerd

In this example, the NerdDinner site includes several pages that rely heavily on database queries, as well as some static HTML. Imagine users have

Dinner

reported that the site's location search feature is slow: we start the investigation by exercising that feature, entering a place name in the search box and
hitting Search. The search is designed to return a list of events near a certain location.

While we use the site, ANTS Performance Profiler's timeline shows the CPU usage the application has caused:

[@) [ASP.NET/IS 7'
File

View Tools Help

Il %6 Processor Time

Chart counters

Bookmark.
=

.y Start Live
© bookmark

Live bookmark'.

Events

Show [1 Call tree -

Select a time region

. N
Drag to select a region an the timeling| nerJJlnn er Stay hlgh.

to display results while profiling

1§ NerdDinner *

hookmarks are set. To bookmark
thd currently selected period, dlick
100% | 'Bookmark selected region’. To record
a bopkmark while profiling, dick 'Start

€ = C |[}127.00.1:3013/#where=new%20york
@ Getting Started [Latest Headlines |] Readability (] Imported From Firef.. Read Later

After running a search, we
see CPU usage climb and

organiZing the Worldls nerds Enter your location or View All U8

[LogOn]

new york

(‘ Search

and helping them eat in packs.

Find a Dinner

Frolin Popular Dinners
b Road Agrial
Ne R e
P = P I Dr
e i Kinnelon/ Ridgawdqad Jul 2 with 22 RSVPs
| r 4 |
/ Fair Lawn
Hopat Boont]
T e el s \Pateson’ i Pt Dr A at an newn Z
Connected II < [3

m

There's a brief, expected CPU peak when the site launches. CPU then returns to near zero until we start our search, when it begins to grow to nearly
200%, staying high for long after the first results were returned. This clearly indicates a performance bottleneck in the search feature.

For more information on analyzing CPU usage, see The timeline.

Now we see where the bottleneck may lie, we can explore the results in detail: In the ANTS Performance Profiler window, click m to stop
profiling.

The website closes.

Analyzing the profiler's results

After a few moments, full results are shown.

At the top of the call tree, ANTS Performance Profiler shows the 'hottest' stack trace; that is, the code that contributes the greatest proportion of CPU time.
This is usually a good place to start looking for opportunities to optimize the code.

fessional (Beta build 455
View Tools Help

awcns |G o Jiapnn VTN ARl | ©

00:30 01:00 01:30 02:00 02:30 03:00

No bookmarks are set. To bookmark
the currently selected period, dick
100 'Bookmark selected region’. To record
. m/ﬁl i a bookmark while profiling, dick 'Start
N |~ o Live bookmark’.
% Processor Time : 4.5251%

eens| || [|

The selected time region contains database call activity totaling = 53.6 seconds. To see time spent calling databases, select Wall-clock time view, as CPU time view does notinclude time spent in
database calls. To view database activity during this time period, switch to Database Calls view. Switchto Database Calls view

Shuw| L Call tree | v| Q Display options: |Meﬂ'10ds with source | v| |[1ee8] w3wp.exe | v| Q CPU time | v| |Peroemages | v| Q < ,_:_’ Send Feedback

Method | Time (%) | Time with children (2%) v | Hit count

= | Transition to managed code...
=4 | s without
http://127.0.0.1:8013/Search/SearchByLocation @

nidaen thout source

NerdDinner.Controllers. ontroller. hByLocation(float latitude, float longitude)

ontroller.<: hByLocation=b__ 0(Dinner dinner)
=R | NerdDinner.Models.DinnerRepository.FindByLocation(float latitude, float longitude)
£ '+ | NerdDinner.Models Dinner itory D latitude, d i
E|X| hidden me = il -

° |SELECI' .1 [Extent1].[DinnerID] AS [DinnerID], - [Extent1].[Title] AS [Title], | J)

Find method: | v| 4 Previous I Next

Hit count " Avg time (36) " Time (%6) |||I- DinnerRepository. NearestDinners

public IQueryable<Dinner: NearestDinners(dcuble latitude, double longitude)
1,998 0.000 0.000
1,898 0.000 0.000 wvar dinners = db.Dinners;

1,998 0.000 0.000 var nearestDinners = new List<Dinner>();

1,998 0.000 0.003 var thePoint = new GeoCoordinate(latitude, longitude);

1,998,000 0.000 4.110 foreach (var dinner in dinners)

1,996,002 0.000 0.008 {

1,996,002 0.000 0.698 if (DistanceBetweenPoints(thePoint, new GeoCoordinate(dinner.Llatitude, d:i.nr‘:l
716,642 0.000 0.021 nearestDinners.Add(dinner);

1,996,002 0.000 0.008

<

Profiling complete

https://documentation.red-gate.com/display/APP9/The+timeline

At the top of each call tree stack, we see the HTTP request that triggered the calling of the .NET methods. As we expected, the hottest stack trace during
the whole profiling session descends from the request http://127.0.0.1:8013/Search/SearchByLocation, child methods of which account for about 78% of
the total time spent in the profiling session. (Notice that the port used for profiling, 8013, isn't the same as the original port, 8010).

Looking down the hot stack, we can see that this request called a .NET method, Ner dDi nner . Model s. Di nner Reposi t ory. Near est Di nners
(doubl e latitude, double |ongitude), thatwas hit 1998 times - as was the SQL SELECT query it ultimately runs.

For more information on hot stacks and HTTP nodes, see The call tree.
If we select the method's parent, Ner dDi nner . Control | ers. SearchControl | er. SearchByLocati on(float |atitude, float |ongitude),

we can view its source code. Because we used a profiling mode with line-level timings, we can also see where inside the method the greatest time was
spent. This shows us that the method retrieves the full list of all recorded events from the database:

'C:inetpub wwwroot\NerdDinner \NerdDinner_2,0\MerdDinner \Contrallers\SearchController. cs' LineLevel Timings
Line Hit count Avg time (&) Time (%) |- SearchController. SearchByLocation |v| E
46} [HttpPost] -
47: public ActionResult SearchBylLocation(float latitude, float longitude)
48 2 0.000 0.000 1
4g! 2 2.834 5.667 var dinners = dinnerRepository.FindBylLocation(latitude, longitude);
58} ==
51: 2 0.000 0.000 var jsonDinners = from dinner in dinners.AsEnumerable()
52 716,642 0.000 5.708 select JsonDinnerFromDinner(dinner);
53}
54 2 2,602 5.205 return Json{jsonDinners.Tolist()); -
55 2 0.000 0.000]
B L
4 ¥

The method Ner dDi nner . Model s. Di nner Reposi tory. Fi ndByLocation(float |atitude, float |ongitude) then tries to process the result
set in the web page, to filter by location:

'C:\inetpub Wwwwroot\NerdDinner {NerdDinner _2.0\NerdDinner \Models\DinnerRepository. cs' Line-Level Timings
Line Hit count Avg time (%) Time (%) |I- DinnerRepository. NearestDinners |v| 5
121 public IQueryable<Dinner> NearestDinners(double latitude, double longitude) -
122 1,998 0.000 0.000 {
123 1,998 0.000 0.000 var dinners = db.Dinners;
124 1,998 0.000 0.000 var nearestDinners = new List<Dinner:();
125 1,998 0.000 0.003 var thePoint = new GeoCoordinate(latitude, longitude);
126 -
127 1,998,000 0.000 4.110 foreach (var dinner in dinners)l
128 1,996,002 0.000 0.008 {
129 1,996,002 0.000 0.658 if (DistanceBetweenPoints(thePoint, new GeoCoordinate(dinner.Llatitude, dinr—|__
13 716,642 0.000 0.021 nearestDinners.Add(dinner}); m
131 1,996,002 0.000 0.008 ¥ i
< o 1 | +

These methods are good candidates for optimization. The same results could be achieved via AJAX calls, and by returning from the database only events
that meet specified latitude and longitude criteria.

For more on the source code view, see Source code.

Switching to Database Calls view, we can see that the query to return the full results set was run thousands of times, summing to nearly 16 seconds just to
return the first result for all the instances of the query:

https://documentation.red-gate.com/display/APP9/The+call+tree
https://documentation.red-gate.com/display/APP9/Source+code

e View Tools Help

Chart counters

B % Processor Time

Bookmark <
s o

i

No bookmarks are set. To bookmark
the currently selected period, diick
‘Bookmark selected region’. To record
2 bookmark while profiing, dick ‘Start

ok Live bookmark.

Events

\ \n'\\/\/ﬂ/\awf\
Time: 00:11.12
% Processor Time : 5.1293% L
(1IN

Show || | Database calls -la ¢.# Send Feedhack
Query | Total time ta first result (ms) v | Average time to first result {ms) | Hit count
SELECT .+ [Extent1].[RsvpID] AS [RsvpID], . [Extent1].[DinnerID] AS [DinnerID], .’ [Extent1].[Attendeelame] AS [Attendeel... = (i5,383.410

SELECT -+ [Extent1].[DinnerID] AS [DinnerID], - [Extent1].[Title] AS [Title], - [Extent1].[EventDate] AS [EventDate], - [Extent1].[Desc... 2,365,742 1.182 H 2001
Find: | -
SQL Source Code
Line H Hit count. || Avg time (%) || Time (%) |H '| =

1 SELECT -

2 [Extentl]. [RsvpID] AS [RsvpID],

3! [Extentl].[DinnerID] AS [DinnerID],

2 [Extentl]. [AttendeeName] AS [AttendeeName],

5 [Extentl]. [AttendeeNameId] AS [AttendeeNameId]

6! FROM [dbo].[RSVPs] AS [Extentl]

7

WHERE [Extentl].[DinnerID] = @EntityKeyValuel

4

Profiling complete

Again, it's clear that this very broad request is being run repeatedly, contributing a large total running time. It would be more efficient to run a more precise

request fewer times.

For more on SQL query timings, see The database calls view.

After profiling, we now have a clear idea of which HTTP requests are associated with slow performance, and which of our .NET methods contain the
source of those slowdowns. We know which methods to rewrite to remove bottlenecks, and the steps we'll need to reproduce in the application to check

that the problem has gone.

https://documentation.red-gate.com/display/APP9/The+database+calls+view

	Worked example - Profiling an ASP.NET application

