Worked example - Profiling an ASP.NET application

This worked example describes how to profile a sample ASP.NET website called NerdDinner. You can download the original ASP.NET MVC source code
for NerdDinner from CodePlex: in this example, the NerdDinner code has been modified to illustrate a performance problem.

In this example, NerdDinner is installed on the same computer as the one being used to profile it, and can be accessed in a web-browser at http://127.
0.0.1:8010 .

Imagine that the problem with NerdDinner is that it is slow to return results for a search involving a SQL query. Imagine you want to know whether you can
do anything in the application's .NET code to improve the site's performance, before you investigate performance on the database, or spend money to
improve the hardware the site runs on.

There are three main steps:

1. Setup ANTS Performance Profiler
2. Use NerdDinner
3. Analyze the profiler's results

Setting up ANTS Performance Profiler
To set up ANTS Performance Profiler:

1. In the ANTS Performance Profiler settings, on the Application Settings tab, select ASP.NET web application (lIS).
2. Inthe ASP.NET web application (URL) dropdown menu, select the site's URL: http://127.0.0.1:8010.
3. Choose the required profiling mode. Here, we'll use line-level and method-level timings.

For more on profiling modes, see Choosing a profiling mode.
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4. Select the port on which to profile your application:

® |f you are using IIS 6, 7 or 8, select Unused port and choose a port that is not used by IIS.
IIS will start a new instance of your application on the specified port.
Note that this will not work if your application's code binds to a specific port.

® [fyou are using IIS 5, or if you are using IIS 6+ and your application binds to a specific port, select Original port.
1IS will restart so that the profiler can attach to the port.
Note that restarting IS stops IIS and restarts only the application that you are profiling. Other websites on the same 1S instance will not
be present when IIS restarts.

The port where the application will be profiled is displayed at the bottom of the ANTS Performance Profiler Settings dialog box.
For more on profiling web applications in 1IS, see Profiling ASP.NET applications running on IIS and Troubleshooting IIS profiling.

P Start profiling G
5. Click

6. The web browser you selected launches and loads NerdDinner.
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Using Nerd

In this example, the NerdDinner site includes several pages that rely heavily on database queries, as well as some static HTML. Imagine users have

Dinner

reported that the site's location search feature is slow: we start the investigation by exercising that feature, entering a place name in the search box and
hitting Search. The search is designed to return a list of events near a certain location.

While we use the site, ANTS Performance Profiler's timeline shows the CPU usage the application has caused:
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There's a brief, expected CPU peak when the site launches. CPU then returns to near zero until we start our search, when it begins to grow to nearly
200%, staying high for long after the first results were returned. This clearly indicates a performance bottleneck in the search feature.



For more information on analyzing CPU usage, see The timeline.

Now we see where the bottleneck may lie, we can explore the results in detail: In the ANTS Performance Profiler window, click m to stop
profiling.

The website closes.

Analyzing the profiler's results

After a few moments, full results are shown.

At the top of the call tree, ANTS Performance Profiler shows the 'hottest' stack trace; that is, the code that contributes the greatest proportion of CPU time.
This is usually a good place to start looking for opportunities to optimize the code.
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The selected time region contains database call activity totaling = 53.6 seconds. To see time spent calling databases, select Wall-clock time view, as CPU time view does notinclude time spent in
database calls. To view database activity during this time period, switch to Database Calls view. Switchto Database Calls view
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Profiling complete



https://documentation.red-gate.com/display/APP9/The+timeline

At the top of each call tree stack, we see the HTTP request that triggered the calling of the .NET methods. As we expected, the hottest stack trace during
the whole profiling session descends from the request http://127.0.0.1:8013/Search/SearchByLocation, child methods of which account for about 78% of
the total time spent in the profiling session. (Notice that the port used for profiling, 8013, isn't the same as the original port, 8010).

Looking down the hot stack, we can see that this request called a .NET method, Ner dDi nner . Model s. Di nner Reposi t ory. Near est Di nners
(doubl e latitude, double |ongitude), thatwas hit 1998 times - as was the SQL SELECT query it ultimately runs.

For more information on hot stacks and HTTP nodes, see The call tree.
If we select the method's parent, Ner dDi nner . Control | ers. SearchControl | er. SearchByLocati on(float |atitude, float |ongitude),

we can view its source code. Because we used a profiling mode with line-level timings, we can also see where inside the method the greatest time was
spent. This shows us that the method retrieves the full list of all recorded events from the database:

'C:inetpub wwwroot\NerdDinner \NerdDinner_2,0\MerdDinner \Contrallers\SearchController. cs' LineLevel Timings
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46} [HttpPost] -
47: public ActionResult SearchBylLocation(float latitude, float longitude)
48 2 0.000 0.000 1
4g! 2 2.834 5.667 var dinners = dinnerRepository.FindBylLocation(latitude, longitude);
58} ==
51: 2 0.000 0.000 var jsonDinners = from dinner in dinners.AsEnumerable()
52 716,642 0.000 5.708 select JsonDinnerFromDinner(dinner);
53}
54 2 2,602 5.205 return Json{jsonDinners.Tolist()); -
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The method Ner dDi nner . Model s. Di nner Reposi tory. Fi ndByLocation(float |atitude, float |ongitude) then tries to process the result
set in the web page, to filter by location:

'C:\inetpub Wwwwroot\NerdDinner {NerdDinner _2.0\NerdDinner \Models\DinnerRepository. cs' Line-Level Timings
Line Hit count Avg time (%) Time (%) |I- DinnerRepository. NearestDinners |v| 5
121 public IQueryable<Dinner> NearestDinners(double latitude, double longitude) -
122 1,998 0.000 0.000 {
123 1,998 0.000 0.000 var dinners = db.Dinners;
124 1,998 0.000 0.000 var nearestDinners = new List<Dinner:();
125 1,998 0.000 0.003 var thePoint = new GeoCoordinate(latitude, longitude);
126 -
127 1,998,000 0.000 4.110 foreach (var dinner in dinners)l
128 1,996,002 0.000 0.008 {
129 1,996,002 0.000 0.658 if (DistanceBetweenPoints(thePoint, new GeoCoordinate(dinner.Llatitude, dinr—|__
13 716,642 0.000 0.021 nearestDinners.Add(dinner}); m
131 1,996,002 0.000 0.008 ¥ i
< o 1 | +

These methods are good candidates for optimization. The same results could be achieved via AJAX calls, and by returning from the database only events
that meet specified latitude and longitude criteria.

For more on the source code view, see Source code.

Switching to Database Calls view, we can see that the query to return the full results set was run thousands of times, summing to nearly 16 seconds just to
return the first result for all the instances of the query:


https://documentation.red-gate.com/display/APP9/The+call+tree
https://documentation.red-gate.com/display/APP9/Source+code
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Profiling complete

Again, it's clear that this very broad request is being run repeatedly, contributing a large total running time. It would be more efficient to run a more precise

request fewer times.

For more on SQL query timings, see The database calls view.

After profiling, we now have a clear idea of which HTTP requests are associated with slow performance, and which of our .NET methods contain the
source of those slowdowns. We know which methods to rewrite to remove bottlenecks, and the steps we'll need to reproduce in the application to check

that the problem has gone.
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