
Automated deployments
This page provides an overview of automating deployments using the PowerShell cmdlets.

SQL Change Automation PowerShell contains a set of cmdlets specifically designed for deployment. These offer a number of advantages:

They create that allow you to review the changes that will happen to the target database if you proceed with the deployment resources
deployment.
They run pre- and post-deployment checks to make sure your target schema hasn't changed unexpectedly.

New-DatabaseReleaseArtifact

Once you have created a database (see), you can use this as the source schema:Package and publish

Example

 $production = New-DatabaseConnection -ServerInstance "prod01\sql2014" -Database "AdventureWorksProduction" -
Username "sa" -Password "p@ssw0rd"
 $dbRelease = New-DatabaseReleaseArtifact -Source "C:\packages\MyDatabase.1.0.0.nupkg" -Target $production

After running the cmdlet, you can either use:

Export-DatabaseReleaseArtifact - to review the deployment resources, including the update script
Use-DatabaseReleaseArtifact - to run the update script against the target database

Export-DatabaseReleaseArtifact

Use this cmdlet to export the output of the cmdlet to disk, so you can review the deployment resources.New-DatabaseReleaseArtifact

Example

Export-DatabaseReleaseArtifact $dbRelease -Path "C:\SQLChangeAutomationArtifacts\"

After running the cmdlet, open to see the database deployment resources. These include:C:\SQLChangeAutomationArtifacts

an file - the SQL script up Update.sql that will date the target database schema to match the source schema
a folder that lets you review a summary of changes between the two databases and check warningsReports
a States folder that contains scripts folder representations of both the source and target schemas

Use-DatabaseReleaseArtifact

This cmdlet completes the deployment set up by . It does this by running the update script in the deployment New-DatabaseReleaseArtifact
resources against the target database.

Example

Use-DatabaseReleaseArtifact $dbRelease -DeployTo $production

As part of the deployment, the cmdlet runs two checks:Use-DatabaseReleaseArtifact

pre-deployment check
Before running the update script, this checks the schema of the database you're deploying to hasn't changed since the creation of the database
deployment resources. If the schema has changed, the update script will fail.
post-deployment check
After running the update script, this checks the schema of the database you're deploying to matches the source database. If they don't match, the
cmdlet will give an error warning.

An example deployment script

Let's now combine the cmdlets we've looked at on this page to make a PowerShell script for a full deployment script:

https://documentation.red-gate.com/display/SCA3/Continuous+integration#Continuousintegration-PackageandPublish

Example

Create a database Release
$production = New-DatabaseConnection -ServerInstance "prod01\sql2014" -Database "AdventureWorksProduction" -
Username "sa" -Password "p@ssw0rd"
$dbRelease = New-DatabaseReleaseArtifact -Source "C:\packages\MyDatabase.1.0.0.nupkg" -Target $production
Export-DatabaseReleaseArtifact $dbRelease -Path "C:\SQLChangeAutomationArtifacts\"

Manually review the deployment resources

Use the database Release to deploy to Production
Use-DatabaseReleaseArtifact $dbRelease -DeployTo $production

It's good practice to run lines 1-4 and 8-9 of the script above in separate stages, so you can review the deployment resources before deciding
whether to continue with the release.

For example, if you're using Octopus Deploy, you can run the script from two separate steps in your deployment project, and add an
intermediate step that pauses the deployment process.Manual intervention

	Automated deployments

