

ANTS Performance Profiler 5.2

December 2009

Note: these pages apply to a version of

this product that is not the current released version.

For the latest support documentation, please see
http://documentation.red-gate.com

http://documentation.red-gate.com/

© Red Gate Software Ltd 2

Contents

Getting started ... 3

Worked example: profiling the performance of an application 4

Setting up and running a profiling session ... 10

Working with application settings ... 12

Setting up Charting Options .. 15

Working with profiling results .. 17

Working with the timeline ... 18

Working with the call tree ... 21

Working with the methods grid .. 25

Working with the call graph ... 27

Working with source code ... 31

ANTS Performance Profiler options ... 33

© Red Gate Software Ltd 3

ANTS Performance Profiler enables you to profile the code of applications written in any of

the languages available for the .NET Framework, including Visual Basic .NET, C#, and

Managed C++. This is useful, for example, to identify inefficient areas of your application

by recording the time spent in each line of your code or method as you run your

application.

You can use ANTS Performance Profiler to profile .NET desktop applications, ASP.NET web

applications hosted in Internet Information Services (IIS) or the ASP.NET Development

Server, .NET Windows services, COM+ server applications, Silverlight 4 or later

applications, and XBAPs. In addition, you can profile applications that host the .NET

Runtime, for example Visual Studio .NET plug-ins.

You can use ANTS Performance Profiler with the following versions of the .NET

Framework:

 1.1 (32-bit applications only)

 2.0 (32-bit or 64-bit applications)

 3.0 (32-bit or 64-bit applications)

 3.5 (32-bit or 64-bit applications)

 4.0 (32-bit or 64-bit applications)

ANTS Performance Profiler: step-by-step

1. Set up a new profiling session, and start profiling.

2. Optionally, select a region on the timeline to restrict the profiling results to a specific

period.

3. Review the profiling results.

Worked example

Learn more about performance and memory profiling with ANTS Performance Profiler by

following one this detailed example:

 Worked example: profiling the performance of an application.

Getting started

© Red Gate Software Ltd 4

This worked example gives you a guided tour of ANTS Performance Profiler. It introduces

you to the application’s main features and shows you how you can use ANTS Performance

Profiler to profile your own applications. The example shows how you can use ANTS

Performance Profiler to identify the most time-critical parts of a demonstration application

and determine why one programming approach is more efficient than the other.

This example is split into the following sections:

1. The Mandelbrot set demonstration application

2. Setting up the profiler

3. Profiling the application

4. Viewing the results

1. The Mandelbrot set demonstration application

This worked example is based on a demonstration .NET desktop application that draws a

fractal called the Mandelbrot set. A debug build of the demonstration application is

included with the ANTS Performance Profiler installation. The source code for the

demonstration application is also provided, along with the .pdb file. This is located in the

same folder as the executable file, so the profiler can display source code with the

profiling results.

Before you profile the demonstration application, you may wish to run the application to

familiarize yourself with its behavior. If you would rather just start profiling, continue to

Setting up the profiler.

1. Run the Mandelbrot set application by double-clicking the executable file located by

default in the following folders:

 For C#:

C:\Program Files\Red Gate\ANTS Performance

Profiler 5\Tutorials\CS\Mandelbrot\Mandelbrot.exe

 For Visual Basic:

C:\Program Files\Red Gate\ANTS Performance

Profiler 5\Tutorials\VB\Mandelbrot\MandelbrotVB.exe

Note that this worked example refers to the C# version of the application; if you are

using Visual Basic, you can follow the example, but you may see slightly different

results.

Worked example: profiling the performance of an application

© Red Gate Software Ltd 5

2. Click Draw Mandelbrot Set to plot the Mandelbrot set:

The application uses two alternative methods of calculating the image. You can

choose between these by selecting Quick or Slow.

3. Close the demonstration application when you have finished using it.

To prepare for profiling the demonstration application, you first need to set up ANTS

Performance Profiler.

2. Setting up the profiler

1. If you have not yet started ANTS Performance Profiler, select it from your Start

menu.

If it is already running, on the File menu, click New Profiling Session.

© Red Gate Software Ltd 6

The Application Settings tab enables you to specify the application to be profiled,

set application-specific options, and choose the profiling mode.

2. Select .NET executable from the Choose application type to profile list.

3. From the Profiling mode list, select Line-level and method-level timings; only

methods with source (detailed). This profiling mode enables you to investigate how

long each line of code takes to execute.

The other profiling modes are available in the professional edition of ANTS

Performance Profiler. For descriptions of these other modes, see Application settings

4. Next to the .NET executable list, click to browse and select the Mandelbrot.exe.

This is located in the folder where you installed ANTS Performance Profiler, for

example:

C:\Program Files\Red Gate\ANTS Performance Profiler 5\Tutorials\CS\Mandelbrot

Under Startup Options, Working Directory is the directory that the application is

launched from and is set to the location of the executable file. Arguments enables

you to specify command line arguments for the running of applications. For this

example, leave these settings unchanged.

3. Profiling the application

1. When you have finished setting up the profiler, click Start Profiling to run the

Mandelbrot application and start collecting performance data.

© Red Gate Software Ltd 7

2. In the Mandelbrot set window, select Slow to choose the slower algorithm, then

click Draw Mandelbrot Set to draw the image.

After a few seconds, the ANTS Performance Profiler timeline is updated with

performance counters and event data.

Note that execution of the Mandelbrot application is slower than usual due to the

overhead of recording the profiling data. By default, ANTS Performance Profiler

estimates the amount of overhead and subtracts this so that the results represent the

normal execution times. This estimate is most accurate when you use a profiling

mode that does not collect line-level timings. You can control whether overhead is

removed from the results with the Adjust timings to compensate for overhead

added by the profiler option (see Performance profiling options for further

information).

3. Wait for a few seconds, until the % Processor Time performance-counter value (the

red line on the timeline) reduces to zero.

4. Now, in the Mandelbrot set window, select Quick to choose the fast algorithm, then

click Draw Mandelbrot Set to draw the image. The timeline continues to update with

performance-counters and event data.

5. When the image has been drawn, click Stop Profiling

6. This closes the Mandelbrot application, and stops the profiling process.

© Red Gate Software Ltd 8

4. Viewing the results

ANTS Performance Profiler summarizes the profiling results and displays the performance

data as a call tree.

The call tree displays performance data for the entire time the Mandelbrot application was

running, so the results include performance data for both the Slow and Quick

algorithms. For the purposes of this example, you will analyze the performance data for

each algorithm individually, by selecting the appropriate region on the timeline.

You can see more information about events by moving your mouse pointer over the blue

lines on the timeline events bar. A tooltip is displayed for each event, listing the event

type (for example, Click), and other useful information such as control names and text.

By reviewing this event information, you can identify relevant regions on the timeline.

1. Click and drag a region that covers the first run of the Mandelbrot application (which

used the Slow algorithm).

ANTS Performance Profiler updates the profiling results such that they relate to the

selected time period only, and displays the performance data as a call tree.

2. Click the icon above the events bar to bookmark this region.This option is only

available in the professional edition of ANTS Performance Profiler.

3. Now, repeat steps 1 and 2, but select a region that covers the second run of the

Mandelbrot application (which used the Quick algorithm).

4. Click on the first bookmark you created to redisplay the call tree of summarized

results for the first run of the Mandelbrot application (which used the Slow

algorithm).

© Red Gate Software Ltd 9

The call tree shows you the hottest stack trace for the selected time period (that is,

the stack trace that accounts for the most execution time). It also indicates methods

that may be good candidates for optimization with an asterisk (*).

5. To change the timings from percentages to seconds, on the View menu, click

Seconds. Timings are displayed as percentages by default (relative to the length of

the time region selected on the timeline).

The Time With Children column clearly shows a substantial drop in the execution

time after the EvaluateUsingComplexNumbers method, suggesting that it may well be

worth investigating this method for possible optimizations.

See Working with the call tree for more information on how to use the call tree

effectively.

6. Click the EvaluateUsingComplexNumbers method in the call tree, to display the

relevant source code. If the source code is not displayed, on the View menu, click

Show Source View. You can now browse line-level timings in the source-code pane.

The red bars in the heat map next to the scroll bar indicate the slowest lines of code.

7. To see a flat list of all methods hit during the selected period, click on the

display toolbar, beneath the call tree.

The methods grid is displayed. You can sort and filter methods as required. For more

information about the methods grid, see Working with the Methods Grid.

8. To see a call graph of the methods hit during the selected period, select a method in

either the call tree or methods grid, and click next to the method name. The call

graph is displayed.

The method you select is used as the base method for the call graph. For further

information about the call graph, see Working with the call graph.

9. To display performance profiling results for the Quick algorithm, click on the second

bookmark that you created on the timeline.

You can see from the results, that the Evaluate method (Time With Children) now

executes much more quickly. EvaluateUsingDoubles replaces the inefficient

EvaluateUsingComplexNumbers method in the Quick algorithm.

© Red Gate Software Ltd 10

To profile an application, you must first set up a profiling session. A session specifies:

 The application type, location, and options for the application you want to profile.

 The profiling mode, which determines the level of detail gathered by the profiler while

your application is running.

 The method used to calculate timing values (CPU time or wall-clock time).

 The performance counters to display on the timeline.

When you start ANTS Performance Profiler, the ANTS Performance Profiler Settings

dialog box is automatically displayed; if ANTS Performance Profiler is already running,

click New Profiling Session on the File menu.

The Application Settings tab displays the settings for the last profiling session you ran.

The settings available depend on the selected application type, and may differ from those

illustrated above.

The Charting Options tab enables you to choose which performance counter values to

display on the timeline for the new profiling session.

Setting up and running a profiling session

© Red Gate Software Ltd 11

To set up and run a profiling session:

1. On the ANTS Performance Profiler Settings dialog box, complete the details on

the Application Settings tab.

2. Choose which performance counters to monitor during profiling using the Charting

Options tab.

3. Click .

On Windows Vista, Windows Server 2008, and Windows 7, if you are not running

ANTS Performance Profiler as an Elevated administrator, the Start Profiling button

has a User Account Control (UAC) shield: . The UAC shield indicates

that ANTS Performance Profiler will request elevation when you start profiling.

The timeline is displayed at the top of the main ANTS Performance Profiler window,

and the application you want to profile is automatically started. Status text at the

bottom-left of the main window indicates what ANTS Performance Profiler is doing

during the profiling session.

The timeline starts displaying performance-counter data and events in near-real time.

There may be a slight delay between starting a profiling session and seeing the first

performance-counter data appear on the timeline.

4. To display profiling results, do one of the following:

 Drag a region on the timeline.

Profiling data is summarized and displayed for the selected time period only. Your

application will continue running and profiling will continue.

 Click Stop Profiling.

Your application will be closed. Profiling data is summarized and displayed for the

entire profiling period.

 Close your application.

Profiling data is summarized and displayed for the entire profiling period.

You can continue working with the timeline to locate periods of interest during the

execution of your application, and to display the associated profiling results.

Once you have displayed some profiling data, you can view and analyze it. For more

information about the different ways you can do this, see Working with profiling results.

© Red Gate Software Ltd 12

Each application type is associated with a number of settings. These include settings that

are common to all application types (Profiling mode and Default timing display), and

some settings that are specific to individual application types.

Application types

Select the application type from the Choose application type to profile list.The

settings available change depending on your selection:

 .NET executable

Startup Options. You can specify the command line arguments that are to be used

when running the application.

 ASP.NET web application (hosted in IIS)

Server Settings and ASP.NET Account Details. If you are using IIS version 6 or

IIS version 7 you can select a different port to profile on; this is not available if you

are using IIS version 5. If you choose a port which is already in use, you must stop

IIS to free the port before you start profiling. You can also manually specify ASP.NET

account details, so that you can run a profile as a different user. This is useful if your

web application needs access to a remote server.

Web applications which implement the Windows Communication Foundation (WCF)

can also be profiled.

 ASP.NET web application (hosted in web development server)

Server Settings. You can specify the URL that your web application starts on. For

example, if you specify "staging" for the virtual directory and "8013" for the port

number, your web application starts on URL http://localhost:8013/staging/.

 Silverlight 4 browser

Silverlight application URL. Enter the URL of the Silverlight 4 browser application
you want to profile. This feature requires the Silverlight 4 plugin in Internet Explorer.

 Windows service

Startup Options. You can specify command line arguments that are to be used when

running the application.

 COM+ server

Client Application. You can specify command line arguments that are to be used

when running the client-application executable, and then use the client-application to

test the COM+ server application during your profiling session.

 XBAP (XAML Browser Application)

No additional setup options are provided. To profile a remotely-hosted XBAP

application, select the .NET executable application type, and then profile Internet

Explorer (iexplore.exe) and navigate to the XBAP application.

Working with application settings

© Red Gate Software Ltd 13

 Attach to .NET 4 process

Choose the .NET process you want to attach to. This feature requires Windows Vista

or later and .NET 4.

Profiling mode

The Profiling mode determines the level of detail gathered by the profiler while your

application is running. The level of detail that you choose may affect the profiling speed

and the overall accuracy of the results.

Profiling Mode Speed Accuracy Detail Profiling Data

Line-level and

method-level

timings; all methods*

 All methods.

This includes

methods

without source

code, such as

those in the

.NET Framework

class libraries.

Method-level timings;

all methods

Line-level and

method-level

timings;

only methods with

source*

 Only methods

for which source

code is

available, for

example,

timings will not

be measured for

.NET Framework

methods.

Method-level timings;

only methods with

source

Sample method-level

timings

*Profiling data is also collected for individual lines of code.

SQL and file I/O

 If you have Windows Vista or later, you can choose to record file I/O operations.

 If you have Windows Vista or later and a SQL server (except Express editions)

installed on the local machine, you can choose to record file I/O operations and SQL
queries.

Default timing display

The Default timing display determines the method used to calculate timing values:

 CPU

Timings exclude any periods of time for which a process is blocked. This can include

sleeping, waiting for I/O, or waiting for some other resource.

© Red Gate Software Ltd 14

 Wall clock

Timings include any periods of time for which a process is blocked (including sleeping,

waiting for I/O, or waiting for some other resource).

You can also change the timing display after you have collected profiling data, by

selecting CPU time or Wall-clock time from the Timing list on the display toolbar. See

Working with the call tree, Working with the methods grid, or Working with the call graph

for more information.

© Red Gate Software Ltd 15

ANTS Performance Profiler can monitor the values of a number of built-in Windows

performance counters while the application you are profiling is executing. The values of

these counters are constantly updated on the timeline as profiling proceeds.

You choose the performance counters you want to monitor using the Charting Options

tab on the ANTS Performance Profiler Settings dialog box.

Note that this feature requires ANTS Performance Profiler Professional.

Not all performance counters are appropriate to all application types that you may be

profiling. You can find more information about individual performance counters under the

Description group box, including details about a counter's relevance to particular

application types.

Your choice will depend on your own requirements but, as an example, you might choose

the following:

From the .NET group:

 The Gen 0 Promoted Bytes/sec counter

This will give the rate at which the garbage collector promotes objects from
Generation 0 to Generation 1.

From the Memory group:

Setting up Charting Options

© Red Gate Software Ltd 16

 The Working Set counter

This shows the total amount of physical memory used by your service (including

memory used by shared DLLs and the .NET runtime itself)

From the Processor group

 The % Processor Time counter (selected by default)

This shows the percentage of time which all running threads use on the CPU.

 The % Time in GC counter

This shows the percentage of time which the process was suspended to allow the last
garbage collection to take place.

We recommend you avoid adding more performance counters than you need, as each

additional counter that is recorded adds to the overhead introduced by the profiler.

Adding too many counters may slow your application substantially.

Adding custom performance counters

You can add custom performance counters to the list of available counters in the

Charting Options tab. To do this:

1. Close ANTS Performance Profiler.

2. Expose your performance counter to the Windows Performance Counter API using the

PerformanceCounter and PerformanceCounterCategory classes of the

System.Diagnostics namespace. (An example describing how to do this is given at

http://msdn.microsoft.com/en-

us/library/system.diagnostics.performancecounter.aspx

(http://msdn.microsoft.com/en-

us/library/system.diagnostics.performancecounter.aspx))

3. Create a new XML file as follows:
<Counters>

 <Category Name="CategoryName">

 <Counter Category="CategoryName" Name="CounterName"
Units="Measurement Units">

 <Instanced />

 </Counter>

 </Category>
</Counters>

Ensure that CategoryName and CounterName are the same as the names used for the

PerformanceCounterCategory and PerformanceCounter. Remove the <Instanced />

node if your counter collects data about the computer, not only the individual process.

You can add multiple categories and counters in the same XML file.

4. Save the XML file as UserCounters.xml in %LOCALAPPDATA%\Red Gate\ANTS

Performance Profiler 6\.

5. Restart ANTS Performance Profiler.

6. The counters that you defined are shown in the list on the Charting Options tab.

http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx

© Red Gate Software Ltd 17

Once you have run a profiling session and displayed some profiling results you can start

analyzing the results in the results pane using the three main display types: call tree,

methods grid, and call graph.

Use the buttons on the timeline pane to switch between display types:

Call tree: shows stack traces that were executed by

your application during the time period you have

selected.

Methods grid: lists each method that was executed by

your application during the time period you have

selected.

Call graph: shows the calling relationships between

methods executed by your application, for the time

period you have selected.

(The call-graph button is disabled until you have

created a new call graph.)

Working with profiling results

© Red Gate Software Ltd 18

The timeline is visible throughout a profiling session, and provides a frequently updated

display of performance-counter values and instances of events related to the application

you are profiling. You can use this overview of application activity to isolate performance-

profiling results for specific time periods.

The timeline enables you to select a region (corresponding to a time period during

execution of your application) for which you wish to display profiling results. You can

select and reselect any region as often as you need to, both during profiling and after you

have stopped profiling and closed your application. You can also create bookmarks for

selected regions, enabling you to define multiple regions and switch between them to

look at data for different periods during a profiling session.

The main section of the timeline shows the values for a selection of Windows performance

counters. You can choose which performance counters to display before you start profiling

your application. See Setting up performance counters for more information.

The event bar on the timeline shows event markers. These indicate when certain types of

event occur within your application, for example, button clicks, window activations, and

exceptions. When you move the mouse pointer over an event marker a tooltip provides

more information about the event. See Working with event markers and method events

for more information.

Working with regions on the timeline

You can select, clear, and bookmark regions on the timeline. Whenever you select a

region, profiling results are displayed that relate to the selected period only.

Selecting a region

To select a region, click and drag the mouse pointer across the timeline. The results

pane (beneath the timeline) updates to show profiling results for the selected region.

Working with the timeline

© Red Gate Software Ltd 19

Resetting a region

To reset the currently selected region to cover the whole timeline, click Select All. The

results pane updates to show profiling results for the entire time period for which your

application was running.

Bookmarking a region

You can create a bookmark on the timeline, for a selected region. This is useful if there

are several periods for which you want to view or compare profiling results: you can

easily switch between bookmarked regions to redisplay profiling results.

To bookmark a selected region, click within the selected region. This region is now

bookmarked (this is indicated by a highlighted bar at the top of the timeline). To select

this region again later, click within the highlighted bar.

You can name a bookmark to make it easier to identify. To name a bookmark, click the

highlighted bar for the bookmark and click . The name you type will be shown on the

bookmark's tooltip.

To delete a bookmark, click the highlighted bar for the bookmark and click .

Adjusting the time scale

You can change the time scale to view performance-counter data in more or less detail by

rotating the mouse wheel, or by using the zoom-control buttons (zoom in , zoom out

, and zoom to fit). You can also use the following keyboard shortcuts: CTRL+PLUS to

zoom in; CTRL+MINUS to zoom out.

To pan the main timeline, move the mouse pointer over the highlighted area in the

overview timeline (), and drag to the left or right.

© Red Gate Software Ltd 20

Working with performance counters

The performance counters available for the current profiling session are listed to the left

of the timeline. You can choose which performance counters to display when you set up a

new profiling session (see Setting up performance counters).

To highlight a particular performance counter on the timeline, click its description in the

Performance Counters list. Values for the selected performance counter are shown on

a tooltip when you move your mouse pointer over the main timeline.

© Red Gate Software Ltd 21

The call tree shows the stack traces that were executed by your application during the

time period you have selected. By default, stack traces are displayed top-down (calling

method above called method). The "hottest" stack trace (the one that took the most time

to run) is displayed at the top of the call tree, and is automatically expanded. If a method

was called in several contexts, it is displayed once for each context in the call tree.

See Tips on using the call tree for more information on how to use the call tree

effectively.

The following data is shown for each method within the stack trace, for the selected time

period:

 Time: the total execution time for the method within this stack trace.

 Time With Children: the total execution time for the method and all its children

within this stack trace.

 Hit Count: the number of times the method was called within this stack trace.

Each method is shown with one of the following icons:

 Root method or leaf method. Root methods are not called by any

other method; leaf methods do not call any other method.

 Indicates call flow when the call-tree direction is top-down (calling

method above called method).

 Indicates call flow when the call-tree direction is bottom-up (called

method above calling method).

 Method is part of the hottest (longest running) stack trace. Used

instead of the root/leaf or call-flow icons.

Methods listed in bold have source code available. To display the method's source code,

click any bold method. Line-level timings are also available in the source-code pane if you

use one of the Line-level ... profiling modes.

You may also see the following items in the call tree. These are shown in bold orange

text, and represent time spent in your application that is in addition to time spent

executing specific methods:

Working with the call tree

© Red Gate Software Ltd 22

 Thread blocked: The executing thread was blocked. For example, the thread may

have been sleeping, waiting for access to a shared resource, or waiting for I/O.

Thread blocked items only contribute to timings in the call tree when the Timing

display option is set to Wall-clock time. To exclude time due to Thread blocked items,

select CPU time from the Timing display option. The call-tree display options are
described below.

 Transition to unmanaged code: A transition from managed code to unmanaged

code occurred at this point in the stack trace. In general, line-level and method-level

timings are not available for the unmanaged code. However, for unmanaged methods

that are declared with extern within managed code, method-level timings are

available.

 Transition to managed code: A transition from unmanaged code to managed code

occurred at this point in the stack trace.

 JIT overhead: JIT compilation occurred at this point in the stack trace during

execution of your application. The method that needed to perform the compilation is
shown as the parent of a JIT overhead item.

 Profiler overhead: Additional overhead introduced by ANTS Performance Profiler.

This is unlikely to be seen when the option to adjust timings to compensate for
overhead added by the profiler is enabled.

 Assembly load or unload: A .NET assembly was loaded or unloaded.

 Module load or unload: A .NET module was loaded or unloaded.

To create a new call graph based on a particular method, select the method in the call

tree, and click the new call graph button in the Method column.

Changing the call-tree display options

You can change the way data is displayed in the call tree, using the display options on the

results toolbar:

© Red Gate Software Ltd 23

 Direction and scope: controls whether the call tree is displayed top-down (calling

methods above called methods) or bottom-up (called methods above calling

methods), and also whether any method, or only methods with source, are shown. If

you choose an option that shows any method, the call tree will include details for .NET
Framework class-library methods.

 Threads: filters the display of stack traces by thread.

 Timing: controls the way in which method timings are calculated. You can choose

from Wall-clock time which includes blocking such as waiting for I/O, or CPU time
which excludes blocking.

 Hide insignificant methods: select this check box to hide methods that contribute

less than 1% of the total execution time for the currently selected time period.

You can also:

 Change the time unit. On the View menu, click Percentages, Ticks, Milliseconds,

or Seconds.

 Reorder the call tree. To change the stack-trace order, click the Time With Children

(%) column heading.

Tips on using the call tree

To locate methods that may be good candidates for optimization:

1. Order the call tree with the slowest stack traces at the top (top-down). If necessary,

click the Time With Children column heading to change the stack-trace order.

2. Starting with the slowest stack traces, look for method pairs where subsequent values

for Time With Children reduce substantially as you move down the stack trace.

Methods with higher values in such pairs may be good candidates for optimization.

ANTS Performance Profiler can optionally suggest methods that may be good

candidates for optimization. To show suggested methods, on the Tools menu, click

Suggest methods to optimize. Suggested method names are marked with an

asterisk (*).

In general, the better you understand the structure and meaning of your code, the

more easily you will be able to interpret the data collected by the profiler.

To reduce the number of methods shown, you can do any of the following:

 Choose a "(methods with source)" option from the Direction and scope list in the

display options.

 Select the Hide insignificant methods check box in the display options.

 Select a shorter region on the timeline.

© Red Gate Software Ltd 24

To find a particular method:

1. On the Tools menu, click Find.

The Find bar is displayed beneath the call tree.

2. Type all or part of the method name you are looking for, and press ENTER.

The first matching row in the call tree is highlighted.

Click Previous or Next to move between matching method names.

© Red Gate Software Ltd 25

The methods grid lists each method that was called by your application during the time

period you have selected. Even if a given method is called in several contexts, it is shown

only once in the methods grid, with aggregated data that accounts for all contexts. You

can order the data by any column by clicking the column heading. Data is ordered by

Time With Children by default.

The following data is shown for each method, for the time period you have selected:

 Time: the total execution time for the method (in all contexts).

 Time With Children: the total execution time for the method and all its children.

 Hit Count: the number of times the method was called.

Methods listed in bold have source code available. To display the method's source code,

click any bold method. Line-level timings are also available in the source-code pane if you

used the Line-level ... (most detail) profiling mode.

Changing the methods-grid display options

You can change the way data is displayed in the methods grid, using the display options

on the results toolbar.

Working with the methods grid

© Red Gate Software Ltd 26

 Scope: controls whether any method, or only methods with source, are shown. If you

choose to display any method, the methods grid will include details for .NET

Framework class-library methods.

 Threads: filters the display of stack traces by thread.

 Timing: controls the way in which method timings are calculated. You can choose

from Wall-clock time which includes blocking such as waiting for I/O, or CPU time
which excludes blocking.

 Hide insignificant methods: select this check box to hide methods that contribute

less than 1% of the total execution time for the currently selected time period.

Tips on using the methods grid

To find particular methods:

1. On the Tools menu, click Find.

The Find bar is displayed beneath the methods grid.

2. Type all or part of the method name you are looking for.

As you type, the methods are filtered to display only those that match your text.

© Red Gate Software Ltd 27

The call graph shows the calling relationships between methods during the execution of

your application, and is focused on a method of your choice (the base method; shown in

black in the example below). If a given method is called in several contexts, it is shown

once for each context in the call graph. The base method is shown only once in the call

graph, unless it is called recursively.

Selecting a base method makes it easy for you to visualize all the callers and callees for

that method.

The percentage value shown in each method is calculated with respect to the base

method as follows:

 For a method called by the base method, this is the percentage of the base method's

execution time that the method accounts for, relative to the base method's total

execution time.

 For a method that calls the base method, this is the percentage of the base method's

total execution time that is due to the calling method.

Calculations are always made with respect to the selected region on the timeline, or the

whole profiling period if you have not selected a region.

Working with the call graph

© Red Gate Software Ltd 28

Creating a new call graph

Every instance of a call graph is based on a particular method, so you must first select a

method in the call tree, methods grid, or source code, then click the create new call

graph button :

Alternatively, right-click the method and select Create new call graph on the short-cut

menu.

The call graph is displayed in the results pane.

Changing the call-graph display options

You can change the way data is displayed in the call graph, using the display options on

the results toolbar:

 Weighting: controls the way that methods are drawn on the call graph.

Equal weighting to all methods is useful when you need to see how methods without

source code (for example, .NET Framework library methods) affect the execution

times in your application. Emphasize methods with source draws the call graph with

much smaller boxes for those methods that do not have source code available. This

allows you to concentrate on the timings for those methods for which you have the

source code.

 Timing: controls the way that method timings are calculated. You can choose from

Wall-clock time which includes blocking such as waiting for I/O, or CPU time which

excludes blocking.

 Hide insignificant methods: select this check box to hide methods that contribute

less than 1% of the total execution time (for the currently selected time period).

You can also change the time unit. On the View menu, click Percentages, Ticks,

Milliseconds, or Seconds.

© Red Gate Software Ltd 29

Navigating the call graph

You can resize the call graph by rotating the mouse wheel, or by using the zoom controls

to the left of the call graph. You can pan the call graph by clicking and dragging on a

blank part of the graph.

To expand a method on the call graph (that is, to show the method's immediate children

or parents), click the method.

To expand the most expensive path from a particular method, hold down the CTRL key

and click the method. Alternatively, right-click and select Expand most expensive

stack trace.

To expand the most expensive path for all children from a particular method, hold down

the SHIFT key and click the method. Alternatively, right-click and select Expand most

expensive stack trace for all callees.

To expand the most expensive path for all parents of a particular method, hold down the

SHIFT key and click the method. Alternatively, right-click and select Expand most

expensive stack trace through all callers.

To collapse a method on the call graph, double-click the method.

More about call graphs

Methods are drawn in several different styles in a call graph:

Base method (the method

you chose when creating

the call graph). Execution-

time percentages are

calculated with respect to

this method.

Method with source code.

Method without source

code. This style is used

when all methods have

equal weighting.

Method without source

code. This style is used

when methods with source

code are emphasized.

© Red Gate Software Ltd 30

Selected method. When a

method is selected, all

methods in that stack trace

are also outlined in red.

Recursive method. The

symbol is added to any

method that is called

recursively within your

application.

Call graphs always include methods for which no source code is available (for example,

methods from the .NET Framework class library) and methods for all threads running in

your application during profiling.

It is not possible to change the time period covered by an existing call graph. To create a

call graph for a different time period, return to the call-tree or methods-grid display,

reselect the required period on the timeline, and create a new call graph.

© Red Gate Software Ltd 31

When you select a method in the results pane and source code is available for that

method, the code is displayed in the source-code pane with the first line of the method

body highlighted.

If you used the most detailed profiling mode for your profiling session, Line-level ... (most

detailed), line-level timings are shown for each line of code (as well as average time and

hit count).

Navigating through source code

You can navigate through the source code for a particular file in several ways:

 To jump directly to lines of code that accounted for the most execution time, use the

heat map alongside the vertical scroll bar. Colored bars indicate the location of the
slowest lines of code in the source-code file:

Click a bar to jump to the relevant line. The heat map is not available if you did not

collect line-level timings.

Working with source code

© Red Gate Software Ltd 32

 To jump directly to a particular method, select the method from the list directly above

the source code. A colored bar against each method indicates the relative time spent

within the method.

 To jump between methods from within the source code, click the method call. This

click-through navigation works for most method calls where the called method has

source code available.

 Use the forward and back history buttons.

You can also create a new call graph from within the source-code pane: right-click the

method that you want to base the call graph on, and select Draw Call Graph > <method

name>.

© Red Gate Software Ltd 33

ANTS Performance Profiler includes a number of options that are applied to all profiling

sessions. To access these options, on the Tools menu, click Options.

Unless you have a particular need to adjust the options, leave them at their default

settings. Changing the default setting for certain options may cause problems during

profiling.

Include source code with saved results

Enable inlining

Adjust timings to compensate for overhead added by the profiler

Simplify very complex stack traces to save memory

Avoid profiling extremely trivial functions

Include source code with saved results

Includes the contents of source files when you save profiling results. This means that you

can review line-level performance data in saved results, without having to restore your

source files to their original state.

You may want to clear this option if, for example, you need to distribute performance

profiling results for an application that has confidential source code.

By default, this option is selected.

ANTS Performance Profiler options

© Red Gate Software Ltd 34

Enable inlining

Enables inlining of methods by the .NET JIT compiler, for the process being profiled.

If you are profiling the release build of an application, selecting this option will produce a

profile that is closer to the "real-world" performance. However, the accuracy of the

results will be reduced. In particular, line-level timings will be distorted, hit counts will

not be recorded for inlined methods, and time spent in inlined methods will be reported

as part of the calling method.

By default, this option is not selected.

Adjust timings to compensate for overhead added by the profiler

Adjusts timings by estimating the influence the profiler has had on the process being

profiled, and subtracts this from the profiling results. This estimate is most accurate when

you use a profiling mode that does not collect line-level timings.

The design of modern processors means that this estimate may not always be accurate,

especially for short function calls.

By default, this option is selected.

Simplify very complex stack traces to save memory

Summarizes complex stack traces in profiling results. This conserves resources on the

machine you are using for profiling. The stack traces that are summarized are unlikely to

be important to your profiling results. However, if you wish to see these summarized

results, you can clear this option.

Clearing this option can significantly increase the memory required by the profiler.

Depending on the application you are profiling, the profiler may become unstable if you

clear this option.

By default, this option is selected.

Avoid profiling extremely trivial functions

Prevents profiling of methods that have a running time measured in tens of nanoseconds,

and which contribute to less than one-billionth of the run time in total. Typically, these

methods do not produce very relevant performance data. Ignoring these methods

reduces the amount of memory required to store and process profiling results.

By default, this option is selected.

