

ANTS Performance Profiler 6.3

July 2011

Note: these pages apply to a version of

this product that is not the current released version.

For the latest support documentation, please see

http://documentation.red-gate.com

http://documentation.red-gate.com/

© Red Gate Software Ltd 2

Contents

© Red Gate Software Ltd 3

Getting started .. 5

Worked example: Profiling performance of an algorithm ... 6

Worked example: Profiling network overheads ... 10

Worked example: Profiling an ASP.NET application ... 12

Worked example: Profiling from the command line ... 17

Worked example: Profiling SQL queries ... 20

Setting up and running a profiling session ... 25

Working with application settings ... 27

Setting up Charting Options .. 30

Profiling .NET executables ... 32

Profiling managed code add-ins ... 33

Profiling ASP.NET applications running on IIS .. 35

Profiling SharePoint .. 38

Profiling ASP.NET applications running on the web development server 41

Profiling Silverlight 4 browser applications ... 43

Profiling Windows services .. 47

Profiling COM+ server applications ... 50

Profiling XBAP applications .. 53

Attaching to a running .NET 4 process .. 55

Profiling SQL queries .. 58

Profiling File I/O ... 65

Setting up MSTest .. 70

Profiling from the command line .. 73

Integrating ANTS Performance Profiler in a test procedure 80

Using the Visual Studio add-in ... 82

The ANTS Performance Profiler user interface .. 84

Working with profiling results .. 85

Working with the timeline ... 86

Working with the call tree ... 90

Working with the methods grid .. 94

Working with the call graph ... 96

Working with source code ... 100

ANTS Performance Profiler options ... 102

Troubleshooting application crashes ... 104

Troubleshooting missing results ... 107

© Red Gate Software Ltd 4

Troubleshooting PDB problems .. 109

Troubleshooting SharePoint Profiling ... 112

Troubleshooting IIS profiling ... 120

Acknowledgements .. 124

© Red Gate Software Ltd 5

ANTS Performance Profiler enables you to profile the code of applications written in any of

the languages available for the .NET Framework, including Visual Basic .NET, C#, and

Managed C++. This is useful, for example, to identify inefficient areas of your application

by recording the time spent in each line of your code or method as you run your

application.

You can use ANTS Performance Profiler to profile .NET desktop applications, ASP.NET web

applications hosted in Internet Information Services (IIS) or the ASP.NET Development

Server, .NET Windows services, COM+ server applications, Silverlight 4 or later

applications, and XBAPs. In addition, you can profile applications that host the .NET

Runtime, for example Visual Studio .NET plug-ins.

You can use ANTS Performance Profiler with the following versions of the .NET

Framework:

 1.1 (32-bit applications only)

 2.0 (32-bit or 64-bit applications)

 3.0 (32-bit or 64-bit applications)

 3.5 (32-bit or 64-bit applications)

 4.0 (32-bit or 64-bit applications)

ANTS Performance Profiler: step-by-step

1. Set up a new profiling session, and start profiling.

2. Optionally, select a region on the timeline to restrict the profiling results to a specific

period.

3. Review the profiling results.

Worked example

Learn more about performance and memory profiling with ANTS Performance Profiler by

following this detailed example:

 Worked example: profiling the performance of an application.

Getting started

© Red Gate Software Ltd 6

This worked example shows how you can use ANTS Performance Profiler to identify the

most time-critical parts of a demonstration application, particularly where two different

approaches to a problem are optimal in different circumstances.

Note that the demonstration application used in this worked example is supplied with

ANTS Performance Profiler 6.3 and later. If you have an earlier version of ANTS

Performance Profiler, either upgrade to version 6.3, or see the Mandelbrot worked

example (http://www.red-

gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=ANTS_Pe

rformance_Profiler/help/6.2/app_Worked_example_performance.htm&toc=ANTS_Pe

rformance_Profiler/help/6.2/toc140804.htm) for version 6.2.

Introducing TimeLineDemo

This worked example uses TimeLineDemo.

TimeLineDemo is a simple Windows application that checks which of a set of numbers are

prime.

There are two different versions of TimeLineDemo:

 In Brute Force configuration, a brute-force method is used to check whether the
number is prime.

The Brute Force build of TimeLineDemo is found in %Program Files%\Red Gate\ANTS

Performance Profiler 6\Tutorials\CS\Precompiled\TimeLine\BruteForce\

 In Miller-Rabin configuration, the Miller-Rabin algorithm is used to check whether the

number is prime.

The Miller-Rabin build of TimeLineDemo is found in %Program Files%\Red Gate\ANTS

Performance Profiler 6\Tutorials\CS\Precompiled\TimeLine\MillerRabin\

The application has two options:

 Max Random

 Sample Size

When TimeLineDemo first starts, it creates a list of as many prime numbers as possible in

15 seconds.

When you click Go, TimeLineDemo creates a list of positive integers, which is Sample

Size items long. All of the integers are random numbers between 1 and Max Random. For

each integer in the list, TimeLineDemo checks whether the number is prime, using the

following algorithm:

1. If the number is in the list created in the first 15 seconds, it is prime.

2. If a number in the list created in the first 15 seconds is a factor of the current

number, the current number is not prime.

Worked example: Profiling performance of an algorithm

http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_Worked_example_performance.htm&toc=ANTS_Performance_Profiler/help/6.2/toc140804.htm
http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_Worked_example_performance.htm&toc=ANTS_Performance_Profiler/help/6.2/toc140804.htm
http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_Worked_example_performance.htm&toc=ANTS_Performance_Profiler/help/6.2/toc140804.htm
http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_Worked_example_performance.htm&toc=ANTS_Performance_Profiler/help/6.2/toc140804.htm

© Red Gate Software Ltd 7

3. In all other cases, use either a brute-force mechanism or the Miller-Rabin algorithm to

check whether the number is prime (depending on the build in use).

Note: Strictly speaking, the Miller-Rabin algorithm is probabilistic. For the purposes of this demonstration,
however, the algorithm can be assumed to be deterministic. This is because the algorithm's results are exact for
integers which are smaller than the largest integer that the field accepts.

Walkthrough

1. Start ANTS Performance Profiler

2. Select .NET executable

3. Enter the path to the brute-force build of TimeLineDemo.exe

4. Click Start Profiling

5. If required by your configuration, grant elevation permission

6. The demo application starts and goes through initial (start-up) phase

7. The application is shown and processor use decreases

8. Click the ANTS Performance Profiler logo

9. Set MaxRandom to 500,000 and SampleSize to 500,000

10. Click OK

11. Click Go

12. The application performs the calculations

13. To see the expensive calculation methods, drag over that phase in the timeline

14. In the Call tree, select RedGate.Demo.MainWindow.<GoButtonClick>

15. The calculations took 1029 milliseconds; that's quick enough

16. Open the File menu and click New Profiling Session...

17. Click Start Profiling

18. When TimeLineDemo has started, click the ANTS Performance Profiler logo

19. Set MaxRandom to 2000000000 and SampleSize to 5000000

20. Click OK

21. Click Go and wait for the calculations to finish

22. Select the calculation phase in the timeline, then

RedGate.Demo.MainWindow.<GoButtonClick>

23. The calculations took 175,252 milliseconds or nearly 3 minutes. That's too slow.

24. To see the brute-force method, open TimeLineDemo.csproj in Visual Studio

25. In APP, right-click ResultSet.Generate() and select Open with (Solution)

If prompted to elevate Visual Studio, click Ignore.

26. VS shows the expensive line. Right-click the method. Select Go to Declaration.

27. The Generate() method is displayed

© Red Gate Software Ltd 8

28. The brute-force method is in use. Try the Miller-Rabin algorithm instead.

29. To switch to Miller-Rabin, click Debug and select Configuration Manager...

30. Next to TimeLineDemo, click Debug and select MillerRabin. Rebuild the demo.

31. In APP, open the File menu and click New Profiling session...

32. Change the .NET executable to the Miller-Rabin build

33. Click Start Profiling and wait for the demo to initialize

34. Click the ANTS Performance Profiler logo

35. Set MaxRandom to 2000000000 and SampleSize to 5000000

36. Click Go

37. Select the calculation phase on the timeline as before

38. The calculations took 66,149 milliseconds, about 66% faster than brute-force

39. Is Miller-Rabin always faster than brute-force? Profile TimeLineDemo again.

40. Set MaxRandom to 500000 and SampleSize to 500000 again

41. The calculations took 1,545 milliseconds, which is slower than brute-force

Conclusion

This walkthrough has demonstrated a realistic programming scenario. It has compared

two methods for testing if a number is prime and shown that Miller-Rabin is more efficient

than the brute force approach when the number being tested is large.

This walkthrough has also demonstrated that you can select just a portion of the timeline

when analyzing results, allowing you to ignore a slow initialization phase, for example.

Learning more

To perform the task demonstrated in this walkthrough more efficiently, you can use the

following additional functionality:

© Red Gate Software Ltd 9

 To help you identify the section of the timeline to select, you can refer to the Event
markers in the Events bar.

 You can name and bookmark sections of the timeline.

For more information, see Working with the timeline.

© Red Gate Software Ltd 10

This worked example demonstrates how to use ANTS Performance Profiler to profile a

.NET executable that exhibits latency problems caused by fetching HTTP data from a

network.

Note that the demonstration application used in this worked example is supplied with

ANTS Performance Profiler 6.3 and later.

Introducing LatencyDemo

This worked example uses LatencyDemo.

LatencyDemo is a simple Windows application that fetches the RSS feeds from the ANTS

Memory Profiler and ANTS Performance Profiler forums on the Red Gate website.

A copy of LatencyDemo is supplied with ANTS Performance Profiler in %Program

Files%\Red Gate\ANTS Performance Profiler 6\Tutorials\CS\Precompiled\LatencyDemo\

Walkthrough

1. Start ANTS Performance Profiler

2. Select .NET executable

3. Enter the path to the demo application LatencyDemo.exe

4. Click Start Profiling

5. If required by your configuration, grant elevation permission

6. The demo application starts

7. Load the ANTS Memory Profiler RSS feed by clicking ANTS Memory Profiler

8. Load the ANTS Performance Profiler RSS feed by clicking ANTS Performance

Profiler

9. Click Intro

10. Click Auto test. Focus switches between the tabs 20 times.

11. In ANTS Performance Profiler, click Stop Profiling. LatencyDemo closes.

12. On the Events bar, find the Method event for Click on Auto test

13. On the timeline, drag over the time when the tabs were switching, starting from the

Method event

14. Look at the hot stack trace. Time is lost by the tab control, but you can't see why.

15. Switch to wall clock time.

16. You should only look at one thread at a time in wall clock time, so find the UI thread.

17. The time is being lost in System.Net.HttpWebRequest.GetResponse()

Worked example: Profiling network overheads

© Red Gate Software Ltd 11

18. Look at the hit count. 40 hits. We're not cacheing the result.

© Red Gate Software Ltd 12

This worked example describes how to profile a sample ASP.NET website called

TheBeerHouse. The original ASP.NET MVC source code for TheBeerHouse can be

obtained from CodePlex (http://thebeerhouse.codeplex.com/releases/view/27519). To

create this worked example, TheBeerHouse has been recompiled for .NET 4.

TheBeerHouse has been installed on the same computer as the one being used to profile

it, and it can be accessed in a web-browser from the address http://localhost/TBH_Web/

Imagine that the problem with TheBeerHouse is just that it is slow when loading pages. I

want to know whether I can do anything to improve the site's performance, before I

spend lots of money on improving the hardware it runs on.

There are three main steps:

1. Set up ANTS Performance Profiler

2. Use TheBeerHouse

3. Analyze the profiler's results

Setting up ANTS Performance Profiler

To set up ANTS Performance Profiler:

1. In the ANTS Performance Profiler settings, on the Application Settings tab, select

ASP.NET web application (IIS).

2. In the ASP.NET web application (URL) dropdown menu, select the site's URL:

http://localhost/TBH_Web/.

3. Choose the required profiling mode.

Worked example: Profiling an ASP.NET application

http://thebeerhouse.codeplex.com/releases/view/27519

© Red Gate Software Ltd 13

4. Choose Record SQL and file I/O performance if you are interested in seeing these

values. (Not available on Windows XP or Windows Server 2003.)

5. Select the port on which to profile your application:

 If you are using IIS 6 or IIS 7, select Unused port and choose a port that is not used

by IIS.

IIS will start a new instance of your application on the specified port.

Note that this will not work if your application's code binds to a specific port.

 If you are using IIS 5, or if you are using IIS 6 or 7 and your application binds to a

specific port, select Original port.

IIS will restart so that the profiler can attach to the port.

Note that restarting IIS stops IIS and only restarts the application that you are

profiling. If your website depends on another site running on the same IIS instance,

that other site will not be present when IIS restarts.

If your application takes too long to start, IIS might not restart correctly. Use IIS

Manager to stop the website manually until you have finished profiling.

The port where the application will be profiled is displayed at the bottom of the ANTS

Performance Profiler Settings dialog box.

1. Click .

© Red Gate Software Ltd 14

2. Internet Explorer launches and shows TheBeerHouse. If you prefer not to use

Internet Explorer, you can open a different browser at the same address. You must

leave the instance of Internet Explorer created by the profiler open, however.

Using TheBeerHouse

In this scenario, it is not known exactly where the performance problem is, and so

initially a number of different pages are accessed, including some which are known to rely

heavily on database queries, and some which mainly contain static HTML. After any

particular performance problems have been identified, those pages can be profiled again

in a more systematic manner.

After a number of different pages have been opened, in the ANTS Performance Profiler

window, click Stop Profiling.

© Red Gate Software Ltd 15

Analyzing the profiler's results

After a few moments, the results are shown. ANTS Performance Profiler shows the

'hottest' stack trace; that is, the code which is using the greatest amount of CPU time.

This is usually a good place to start looking for opportunities to optimize the code.

TheBeerHouse is already quite well optimized, with 66% of processor time being spent on

very inexpensive methods. The site could be improved, however, because nearly 5% of

the processor's time is spent on a method called SetInputControlsHighlight(), which

runs when each page loads.

Select that row.

Because the source code for TheBeerHouse is available, ANTS Performance Profiler shows

the source code for this method in the lower pane. Every time a page loads,

SetInputControlsHighlight() iterates over the input fields it contains, and adds

onfocus and onblur attributes to the HTML output, in turn causing the DOM to change

their class when the input has focus. This is clearly a good candidate for optimization,

because the same result can be achieved by just changing the CSS file to add the :focus

pseudo-class.

© Red Gate Software Ltd 16

In this instance, the File I/O and SQL results do not show anything abnormal.

© Red Gate Software Ltd 17

This worked example demonstrates how you can use ANTS Performance Profiler from the

command line.

Profiling from the command line is useful if you want to integrate performance profiling

into your usual testing or build processes. The profiler results can be output to CSV, XML

or HTML, which means that you can easily check the results for abnormal values as part

of your automated routines.

This example uses the following simple C# Console Application (called SimpleApp.exe)

which prints '.' to the console 100 times:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace SimpleApp

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("The application has started");

 // Count from 0-99

 int i = 0;

 while (i < 100)

 {

 Console.Write('.');

 i++;

 }

 Console.WriteLine("The application is exiting");

 }

 }

}

Another simple C# Console Application can read the results CSV file created by ANTS

Performance Profiler, to check that Write() is called exactly 100 times, thereby verifying

that SimpleApp is performing correctly:

using System;

Worked example: Profiling from the command line

© Red Gate Software Ltd 18

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.IO;

namespace ReadOutput

{

 class TextFileReader

 {

 static void Main(string[] args)

 {

 StreamReader sr = new StreamReader(new

FileStream("C:\testing\results.csv", FileMode.Open, FileAccess.Read));

 string line;

 int ok = 1;

 // Read file line-by-line

 while ((line = sr.ReadLine()) != null)

 {

 char separator = ',';

 string[] linedata = new string[10];

 linedata = line.Split(separator);

 // Try to cast linedata[3] as int, not string

 int i;

 try

 {

 i = (int)int.Parse(linedata[3]);

 // Check the number of times that Write(char value) is

run

 if ((linedata[2] == "Write(char value)") && (i != 100))

 {

 Console.WriteLine("Test failed");

 ok = 0;

 }

 }

 catch

 {

 // Do nothing

 }

© Red Gate Software Ltd 19

 }

 sr.Close();

 if (ok == 1)

 {

 Console.WriteLine("Test passed OK");

 }

 }

 }

}

Finally, an MS-DOS batch file can be written to profile SimpleApp in ANTS Performance

Profiler and, when this is complete, to check that the test passed:

C:

CD /

CD "Program Files\Red Gate\ANTS Performance Profiler 6\"

Profile.exe /e:"C:\testing\SimpleApp.exe" /ll /csv:"C:\testing\results.csv"

C:

CD testing

ReadOutput.exe

The console shows:

C:\testing>ReadOutput.exe

Test passed OK

giving the expected confirmation that SimpleApp is performing correctly.

For a list of all available command line arguments, see Profiling from the command line

(API).

For a more complex example describing how to integrate ANTS Performance Profiler

results with an NUnit test, see Integrating Performance Profiling into the Build Process

(http://www.codeproject.com/KB/showcase/Performance-Profiling.aspx).

http://www.codeproject.com/KB/showcase/Performance-Profiling.aspx

© Red Gate Software Ltd 20

This walkthrough demonstrates how you can profile the SQL queries generated by your

application.

Note: SQL Profiling is only available with Windows Vista or later. You must profile a

locally-hosted SQL server. It is not possible to use SQL profiling with Microsoft SQL

Server Express editions.

Before you start

To follow this walkthrough, you will need to:

 install the Customers database table on your SQL server

A copy of the Customers database table is provided in

%ProgramFiles%\Red Gate\ANTS Performance Profiler

6\Tutorials\CS\QueryBee\Customers.zip

Ensure that no indexes or primary keys are set on the table.

 start QueryBee.exe

A copy of QueryBee.exe is provided in %ProgramFiles%\Red Gate\ANTS Performance

Profiler 6\Tutorials\CS\QueryBee\QueryBee.exe

Procedure

To profile QueryBee while it sends SQL queries to the server:

1. Start ANTS Performance Profiler.

2. Select .NET executable

3. Enter the path to QueryBee.exe

Worked example: Profiling SQL queries

© Red Gate Software Ltd 21

4. Ensure that Record SQL and file I/O performance is enabled.

5. Click Start Profiling to start QueryBee. Select the test database and click Connect.

6. Run the query SELECT * FROM Customers to ensure that all records are read into

memory, and that further queries will not include file I/O overheads.

© Red Gate Software Ltd 22

7. Run the query SELECT * FROM Customers WHERE Country LIKE 'Canada'

8. The following query is executed, using the equals operator instead:
SELECT * FROM Customers WHERE Country='Canada'

9. To test updated information, run the following query:
UPDATE Customers SET Email='a@example.com' WHERE ID1=100

© Red Gate Software Ltd 23

10. To show that a primary key will make this query quicker, a primary key is applied to

the ID1 field in SQL Server Management Studio:

11. Run the following query in QueryBee:
UPDATE Customers SET Email='b@example.com' WHERE ID1=100

12. In the ANTS Performance Profiler window, click Stop Profiling

13. On the Performance Analysis menu, set ANTS Performance Profiler to SQL Server

profiling mode:

© Red Gate Software Ltd 24

ANTS Performance Profiler displays the time taken for each query and the number of

rows affected or returned. The LIKE operator is slower than the = operator for text

comparison, and the update query was much quicker with a primary key than without a

key.

The examples in this worked example have been kept deliberately simple.

A more complex use case for SQL profiling that you may consider is when complex code

generates an SQL query at runtime. In such cases, it might be difficult to check exactly

what query has been run, but profiling an application with ANTS Performance Profiler

allows you to see immediately how your application has interacted with the SQL server.

© Red Gate Software Ltd 25

To profile an application, you must first set up a profiling session. A session specifies:

 The application type, location, and options for the application you want to profile.

 The profiling mode, which determines the level of detail gathered by the profiler while

your application is running.

 The method used to calculate timing values (CPU time or wall-clock time).

 The performance counters to display on the timeline.

When you start ANTS Performance Profiler, the ANTS Performance Profiler Settings

dialog box is automatically displayed; if ANTS Performance Profiler is already running,

click New Profiling Session on the File menu.

The Application Settings tab displays the settings for the last profiling session you ran.

The settings available depend on the selected application type, and may differ from those

illustrated above.

The Charting Options tab enables you to choose which performance counter values to

display on the timeline for the new profiling session.

Setting up and running a profiling session

© Red Gate Software Ltd 26

To set up and run a profiling session:

1. On the ANTS Performance Profiler Settings dialog box, complete the details on

the Application Settings tab.

2. Choose which performance counters to monitor during profiling using the Charting

Options tab.

3. Click .

On Windows Vista, Windows Server 2008, and Windows 7, if you are not running

ANTS Performance Profiler as an Elevated administrator, the Start Profiling button

has a User Account Control (UAC) shield: . The UAC shield indicates

that ANTS Performance Profiler will request elevation when you start profiling.

The timeline is displayed at the top of the main ANTS Performance Profiler window,

and the application you want to profile is automatically started. Status text at the

bottom-left of the main window indicates what ANTS Performance Profiler is doing

during the profiling session.

The timeline starts displaying performance-counter data and events in near-real time.

There may be a slight delay between starting a profiling session and seeing the first

performance-counter data appear on the timeline.

4. To display profiling results, do one of the following:

 Drag a region on the timeline.

Profiling data is summarized and displayed for the selected time period only. Your

application will continue running and profiling will continue.

 Click Stop Profiling.

Your application will be closed. Profiling data is summarized and displayed for the

entire profiling period.

 Close your application.

Profiling data is summarized and displayed for the entire profiling period.

You can continue working with the timeline to locate periods of interest during the

execution of your application, and to display the associated profiling results.

Once you have displayed some profiling data, you can view and analyze it. For more

information about the different ways you can do this, see Working with profiling results.

© Red Gate Software Ltd 27

Each application type is associated with a number of settings. These include settings that

are common to all application types (Profiling mode and Default timing display), and

some settings that are specific to individual application types.

Application types

Select the application type from the Choose application type to profile list. The

settings available change depending on your selection:

 .NET executable

Startup Options. You can specify the command line arguments that are to be used

when running the application.

 ASP.NET web application (hosted in IIS)

Server Settings and ASP.NET Account Details. If you are using IIS version 6 or

IIS version 7 you can select a different port to profile on; this is not available if you

are using IIS version 5. If you choose a port which is already in use, you must stop

IIS to free the port before you start profiling. You can also manually specify ASP.NET

account details, so that you can run a profile as a different user. This is useful if your

web application needs access to a remote server.

Web applications which implement the Windows Communication Foundation (WCF)

can also be profiled.

Web applications are profiled in Microsoft Internet Explorer, even if it is not your

preferred browser. This is because ANTS Performance Profiler uses the low-level data

exposed by Internet Explorer.

 ASP.NET web application (hosted in web development server)

Server Settings. You can specify the URL that your web application starts on. For

example, if you specify "staging" for the virtual directory and "8013" for the port

number, your web application starts on URL http://localhost:8013/staging/.

Web applications are profiled in Microsoft Internet Explorer, even if it is not your

preferred browser. This is because ANTS Performance Profiler uses the low-level data

exposed by Internet Explorer.

 Silverlight 4 browser

Silverlight application URL. Enter the URL of the Silverlight 4 browser application

you want to profile. This feature requires the Silverlight 4 plugin in Internet Explorer.

 Windows service

Startup Options. You can specify command line arguments that are to be used when

running the application.

 COM+ server

COM+ server Application. You can specify the location of the COM+ server

application.

Client Application. You can specify command line arguments that are to be used

when running the client application.

See Profiling a COM+ server for more details.

Working with application settings

© Red Gate Software Ltd 28

 XBAP (XAML Browser Application)

No additional setup options are provided. To profile a remotely-hosted XBAP

application, select the .NET executable application type, and then profile Internet

Explorer (iexplore.exe) and navigate to the XBAP application.

 Attach to .NET 4 process

Choose the .NET process you want to attach to. This feature requires Windows Vista

or later and .NET 4.

Profiling mode

The Profiling mode determines the level of detail gathered by the profiler while your

application is running. The level of detail that you choose may affect the profiling speed

and the overall accuracy of the results.

Profiling Mode Speed Accuracy Detail Profiling Data

Line-level and

method-level

timings; all methods*

 All methods.

This includes

methods

without source

code, such as

those in the

.NET Framework

class libraries.

Method-level timings;

all methods

Line-level and

method-level

timings;

only methods with

source*

 Only methods

for which source

code is

available, for

example,

timings will not

be measured for

.NET Framework

methods.

Method-level timings;

only methods with

source

Sample method-level

timings

*Profiling data is also collected for individual lines of code.

© Red Gate Software Ltd 29

SQL and file I/O

 If you have Windows Vista or later, you can choose to record file I/O operations.

 If you have Windows Vista or later and a SQL server (except Express editions)

installed on the local machine, you can choose to record file I/O operations and SQL
queries.

Default timing display

The Default timing display determines the method used to calculate timing values:

 CPU

Timings exclude any periods of time for which a process is blocked. This can include

sleeping, waiting for I/O, or waiting for some other resource.

 Wall clock

Timings include any periods of time for which a process is blocked (including sleeping,

waiting for I/O, or waiting for some other resource).

You can also change the timing display after you have collected profiling data, by

selecting CPU time or Wall-clock time from the Timing list on the display toolbar. See

Working with the call tree, Working with the methods grid, or Working with the call graph

for more information.

© Red Gate Software Ltd 30

ANTS Performance Profiler can monitor the values of a number of built-in Windows

performance counters while the application you are profiling is executing. The values of

these counters are constantly updated on the timeline as profiling proceeds.

You choose the performance counters you want to monitor using the Charting Options

tab on the ANTS Performance Profiler Settings dialog box.

Note that this feature requires ANTS Performance Profiler Professional.

Not all performance counters are appropriate to all application types that you may be

profiling. You can find more information about individual performance counters under the

Description group box, including details about a counter's relevance to particular

application types.

Your choice will depend on your own requirements but, as an example, you might choose

the following:

From the .NET group:

 The Gen 0 Promoted Bytes/sec counter

This will give the rate at which the garbage collector promotes objects from
Generation 0 to Generation 1.

From the Memory group:

Setting up Charting Options

© Red Gate Software Ltd 31

 The Working Set counter

This shows the total amount of physical memory used by your service (including

memory used by shared DLLs and the .NET runtime itself)

From the Processor group

 The % Processor Time counter (selected by default)

This shows the percentage of time which all running threads use on the CPU.

 The % Time in GC counter

This shows the percentage of time which the process was suspended to allow the last
garbage collection to take place.

We recommend you avoid adding more performance counters than you need, as each

additional counter that is recorded adds to the overhead introduced by the profiler.

Adding too many counters may slow your application substantially.

Adding custom performance counters

You can add custom performance counters to the list of available counters in the

Charting Options tab. To do this:

1. Close ANTS Performance Profiler.

2. Expose your performance counter to the Windows Performance Counter API using the

PerformanceCounter and PerformanceCounterCategory classes of the

System.Diagnostics namespace. (An example describing how to do this is given at

http://msdn.microsoft.com/en-

us/library/system.diagnostics.performancecounter.aspx

(http://msdn.microsoft.com/en-

us/library/system.diagnostics.performancecounter.aspx))

3. Create a new XML file as follows:
<Counters>

 <Category Name="CategoryName">

 <Counter Category="CategoryName" Name="CounterName"
Units="Measurement Units">

 <Instanced />

 </Counter>

 </Category>
</Counters>

Ensure that CategoryName and CounterName are the same as the names used for the

PerformanceCounterCategory and PerformanceCounter. Remove the <Instanced />

node if your counter collects data about the computer, not only the individual process.

You can add multiple categories and counters in the same XML file.

4. Save the XML file as UserCounters.xml in %LOCALAPPDATA%\Red Gate\ANTS

Performance Profiler 6\.

5. Restart ANTS Performance Profiler.

6. The counters that you defined are shown in the list on the Charting Options tab.

http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx

© Red Gate Software Ltd 32

To profile .NET executables, on the ANTS Performance Profiler Settings dialog box,

perform the following steps:

1. Under Choose application type to profile, click .NET executable.

2. Browse to the .NET executable that you want to profile.

Use the dropdown list to select a recently-profiled application.

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

4. If required, change the Working directory.

The working directory is the path where the application will start. By default, this is

the directory where the executable is located.

Use the dropdown list to select a recently-used working directory.

5. If required, specify any command line Arguments that are to be used when running

the application.

6. If required, change the performance counters to record; see Setting up Charting

Options.

7. Click .

The .NET executable starts; interact with the application normally.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

When you have finished interacting with your application, click the Stop Profiling

button in ANTS Performance Profiler.

See also Worked example: Profiling the performance of an algorithm.

Profiling .NET executables

© Red Gate Software Ltd 33

Microsoft Visual Studio, Microsoft Word, Microsoft Excel and Microsoft SQL Server

Management Studio are all examples of desktop applications which host the .NET

Common Language Runtime. You can create .NET add-ins for these programs.

The procedure for using ANTS Performance Profiler to profile a native desktop application

that hosts the .NET runtime is similar to that for profiling other .NET applications.

A SQL Server Management Studio add-in is used as an example in this topic. SQL Server

Management Studio is a native application which hosts the CLR which, in turn, allows it to

execute managed code. If you are profiling an add-in for a different program (Word or

Excel, for example), you must use that program instead of SQL Server Management

Studio in all of the following instructions.

Setting up the performance profiler

To profile managed code add-ins, on the ANTS Performance Profiler Settings dialog

box, perform the following steps:

1. Under Choose application type to profile, click .NET executable.

2. Browse to the .NET executable that you want to profile.

Note: this is the native application which contains your add-in; for example, SQL

Server Management Studio.

Use the dropdown list to select a recently-profiled application.

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

4. If required, change the Working directory.

The working directory is the path where the application will start. By default, this is

the directory where the native application is located.

Use the dropdown list to select a recently-used working directory.

5. If required, specify any command line Arguments that are to be used when running

the application.

6. If required, change the performance counters to record; see Setting up Charting

Options.

7. Click .

SQL Server Management Studio starts. Connect to a server and interact with your add-in.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

Profiling managed code add-ins

© Red Gate Software Ltd 34

When you have finished interacting with your web application, click the Stop

Profiling button in ANTS Performance Profiler.

Other applications

The same approach will work with all other hosting applications. For example, to profile a

Visual Studio .NET add-in, enter the full path to devenv.exe as the .NET application that

you want to profile.

You can also profile a managed code Microsoft Management Console (MMC) snap-in in the

same way; select mmc.exe as the .NET executable, add the snap-in, then interact with it.

© Red Gate Software Ltd 35

To profile ASP.NET applications running on IIS, on the ANTS Performance Profiler

Settings dialog box, perform the following steps:

1. Under Choose application type to profile, click ASP.NET web application (IIS).

2. Select the ASP.NET web application (URL) for the root directory of the web

application that you want to profile.

To load a list of currently-running sites from IIS into the dropdown list, click .

Note that the port specified in this URL is the port where the application usually runs

under IIS, which is not necessarily the same as the port where the application is to be

profiled (see step 4).

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

4. Select the port on which to profile your application:

 If you are using IIS 6 or IIS 7, select Unused port and choose a port that is not

used by IIS.

IIS will start a new instance of your application on the specified port.

Note that this will not work if your application's code binds to a specific port.

 If you are using IIS 5, or if you are using IIS 6 or 7 and your application binds to a

specific port, select Original port.

IIS will restart so that the profiler can attach to the port.

Note that restarting IIS stops IIS and only restarts the application that you are

profiling. If your website depends on another site running on the same IIS

instance, that other site will not be present when IIS restarts.

If your application takes too long to start, IIS might not restart correctly. Use IIS

Manager to stop the website manually until you have finished profiling.

The port where the application will be profiled is displayed at the bottom of the ANTS

Performance Profiler Settings dialog box.

5. If required, select Manually specify ASP.NET account details and enter the User

name, Password and Domain.

This option is available for IIS 6 and IIS 7 only.

With IIS 6 or IIS 7, ANTS Performance Profiler profiles your web application as the

Windows Local System user by default. This is appropriate for most websites. If your

web application connects to a remote server (such as a database server), for

example, the Windows Local System user might not have appropriate permissions to

make the remote connection. In this case, enter the credentials of a user who does

have the required permissions. Note that the user you specify must be an

administrator, and must have permission to read from %ProgramFiles%\Red

Gate\ANTS Performance Profiler 6\ProfilerCore.dll

Profiling ASP.NET applications running on IIS

© Red Gate Software Ltd 36

With IIS 5, your application is always profiled as the ASPNET user. Ensure that the

ASPNET user has permission to read from %ProgramFiles%\Red Gate\ANTS

Performance Profiler 6\ProfilerCore.dll

6. If required, change the performance counters to record; see Setting up Charting

Options.

7. Click .

ANTS Performance Profiler launches the IIS user mode worker process (w3wp.exe), using

a cut-down configuration file based on the site's applicationHost.config configuration file.

Internet Explorer then starts and displays your web application.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

When you have finished interacting with your web application, click the Stop

Profiling button in ANTS Performance Profiler.

© Red Gate Software Ltd 37

Note that you can only profile ASP.NET applications running on the computer where the

profiler is installed. You cannot profile web applications that use SSL, because w3wp.exe

does not support running SSL websites outside of IIS.

See also Profiling an ASP.NET application (worked example).

If you encounter problems while trying to profile an application in IIS, see

Troubleshooting IIS profiling (http://www.red-

gate.com/supportcenter/Content/ANTS_Performance_Profiler/help/6.3/APP_cannot_start_

iis).

Profiling WCF services running on IIS

The procedure for profiling Windows Communication Foundation (WCF) services running

in IIS is similar to the procedure used to profile other types of web application in IIS. It

may help to think of the service as a server in a server-client relationship.

Please note the following:

 Before you start, change the WCF client contract to communicate on the unused port
that you select in ANTS Performance Profiler (by default, 8013).

Changing the port is necessary because otherwise the client will communicate with

the copy of the server hosted in IIS, not the copy in the worker process started by

ANTS Performance Profiler.

 Set the ASP.NET web application (URL) to the path to the web application on the

server.

 When you start profiling, Internet Explorer will launch.

Minimize this window and interact with your client application instead. Do not close

the Internet Explorer window during profiling; this will stop ANTS Performance Profiler

from collecting the performance data.

http://www.red-gate.com/supportcenter/Content/ANTS_Performance_Profiler/help/6.3/APP_cannot_start_iis
http://www.red-gate.com/supportcenter/Content/ANTS_Performance_Profiler/help/6.3/APP_cannot_start_iis
http://www.red-gate.com/supportcenter/Content/ANTS_Performance_Profiler/help/6.3/APP_cannot_start_iis

© Red Gate Software Ltd 38

ANTS Performance Profiler can profile managed code that runs on a Microsoft SharePoint

server because Microsoft SharePoint 2007 is implemented as an ASP.NET web application.

Please note that ANTS Performance Profiler was not designed to support SharePoint 2010,

but a workaround may allow you to profile managed code running on a Sharepoint 2010

server with IIS 7. For details, see Profiling Sharepoint 2010.

Setting up the Performance Profiler

To profile SharePoint, perform the following steps:

1. Open Internet Information Server (IIS) Manager and stop the website.

2. In ANTS Performance Profiler, on the ANTS Performance Profiler Settings dialog

box, under Choose application type to profile, click ASP.NET web application

(IIS).

3. Enter the path to the ASP .NET web application that hosts your site collection. The

path should be in the following format:

http://server:port/

The server is the name of the local server and the port is the TCP port on which the

web application normally runs. If the site collection is on the root virtual directory for

the site, you must include the trailing slash.

Note that you must enter the path manually, because the drop-down list of available

sites does not support SharePoint.

4. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

5. Select the port on which to profile your application:

 If you are using IIS 6 or IIS 7, select Unused port and choose a port that is not

used by IIS.

Note that this will not work if your application's code specifically binds to a specific

port.

 If you are using IIS 5, or if you are using IIS 6 or 7 and your application binds to a

specific port, select Original port.

IIS will restart so that the profiler can attach to the port.

If IIS does not restart correctly, use IIS Manager to stop the website until you

have finished profiling.

The port where the application will be profiled is displayed at the bottom of the ANTS

Performance Profiler Settings dialog box.

6. If required, select Manually specify ASP.NET account details and enter the User

name, Password and Domain.

ANTS Performance Profiler profiles your web application as the Windows Local System

user. If the Windows Local System user might not have appropriate permissions to

Profiling SharePoint

© Red Gate Software Ltd 39

use SharePoint site collection, enter the credentials of a user who does have the

required permissions. Note that the user you specify must be an administrator.

7. If required, change the performance counters to record; see Setting up Charting

Options.

8. Click .

Use your SharePoint 2007 site collection as normal. Any additions that you have coded,

such as web parts and lists, will be reflected in the ANTS Performance Profiler results if

these objects have been accessed.

During a profiling session you can interact with the profiler whilst your site collection is

still being profiled, and obtain results by selecting areas of the timeline.

When you have finished interacting with your web application, click the Stop

Profiling button in ANTS Performance Profiler.

© Red Gate Software Ltd 40

Note that you can only profile SharePoint site collections running on the computer where

the profiler is installed.

See also

Troubleshooting SharePoint Profiling 112

© Red Gate Software Ltd 41

The ASP.NET web development server (also known as 'WebDev' or 'Cassini') is the built-in

web server for your development environment. It is a good place to start debugging web

applications because, unlike in IIS, you do not have to worry about configuration and

security settings. You also do not have to worry about stopping and restarting the web

server. The web development server does have limitations, however, so eventually you

will want to test your web application under IIS. This is especially true if your web

application has pages accessible only by users with the appropriate security settings.

You can profile a debug build of your ASP.NET web application while it runs in the web

development server by following the instructions below.

Setting up the Performance Profiler

To profile ASP.NET applications running on web development server, on the ANTS

Performance Profiler Settings dialog box, perform the following steps:

1. Under Choose application type to profile, click ASP.NET web application (web

development server).

2. Set the ASP.NET web application (path) for the web application that you want to

profile.

The path is where the file with the file extension .aspx is located.

Note: You may find that the .aspx file is saved in the /WebSites/ directory, not in the

/Projects/ directory where you would normally expect to find it.

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

4. Under Server Settings, set Web server virtual directory to the application's

virtual path on the web server.

5. In the Port to bind web server to box, set the port on which ANTS Performance

Profiler should listen.

For example, if you specify staging for the virtual directory and 8013 for the port

number, your web application starts on URL http://localhost:8013/staging/.

6. Set the .NET version used by your web application.

7. If required, change the performance counters to record; see Setting up Charting

Options.

Profiling ASP.NET applications running on the web development
server

© Red Gate Software Ltd 42

8. Click .

The web development server starts and the web application is shown in Internet Explorer.

Note that, although you can interact with the application using any web browser, closing

the Internet Explorer instance opened by ANTS Performance Profiler will end your

profiling session.

During a profiling session, while your application runs, you can obtain results in the

profiler by selecting areas of the timeline.

When you have finished interacting with your web application, click the Stop

Profiling button in ANTS Performance Profiler.

This closes both the web development server and the ASP.NET application. ANTS

Performance Profiler shows all of the profiling data collected for the application.

© Red Gate Software Ltd 43

You can use ANTS Performance Profiler to profile Silverlight 4 applications.

Note that line-level timings are not available when profiling Silverlight applications, and

that some performance counters are not shown on the timeline.

Introducing Silverlight 4 applications

Microsoft Silverlight 4 applications can run either in a web browser, or in an Out-Of-

Browser mode, depending on the setting chosen at compile-time.

Silverlight applications that run in a web browser are contained in an HTML or ASPX file

which may be stored:

 in the local file system.

 on an HTTP server on the local computer.

 on an HTTP server on a remote computer.

Setting up the Performance Profiler (Silverlight applications running in a web

browser)

To profile Silverlight 4 browser applications running in a web browser, on the ANTS

Performance Profiler Settings dialog box, perform the following steps:

1. Close all instances of Internet Explorer that are currently running on your computer.

This ensures that ANTS Performance Profiler connects to the correct instance of

iexplore.exe when you start profiling.

2. Under Choose application type to profile, click Silverlight 4 browser

application.

3. For the Silverlight application URL, enter either the local file path (prefixed by

file:///) to the HTML file that embeds the Silverlight application, or the URL of the

HTML or ASPX file that embeds the application.

Note that the URL must be a server running on the same computer as the computer

where ANTS Performance Profiler is installed.

4. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

Note that line-level timings are not available for Silverlight applications.

5. If required, change the performance counters to record; see Setting up Charting

Options.

Profiling Silverlight 4 browser applications

© Red Gate Software Ltd 44

6. Click .

Microsoft Internet Explorer launches, and the Silverlight application is shown.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

When you have finished interacting with your web application, click the Stop

Profiling button in ANTS Performance Profiler.

Setting up the Performance Profiler (Silverlight applications running in Out-Of-

Browser mode)

To profile Silverlight 4 browser applications running in Out-Of-Browser mode, on the

ANTS Performance Profiler Settings dialog box, perform the following steps:

© Red Gate Software Ltd 45

1. Under Choose application type to profile, click Silverlight 4 browser

application.

2. For the Silverlight application URL, enter either the local file path (prefixed by

file:///) to the XAP file.

This is normally found in %LOCALAPPDATA%\Microsoft\Silverlight\OutOfBrowser\.

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

Note that line-level timings are not available for Silverlight applications.

4. If required, change the performance counters to record; see Setting up Charting

Options.

5. Click .

The Microsoft Silverlight Out-Of-Browser launcher starts, and the Silverlight application is

shown.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

© Red Gate Software Ltd 46

When you have finished interacting with your web application, click the Stop

Profiling button in ANTS Performance Profiler.

Troubleshooting

If you experience problems:

 Ensure that the Silverlight application is compiled against Silverlight 4. Older versions

of Silverlight may appear to work but will give inaccurate results.

 Check that the Silverlight application runs correctly on the computer which you are

profiling it on, without the profiler attached.

 Note that you may need to run ANTS Performance Profiler as an Administrator for
some types of Silverlight application and computer configuration.

© Red Gate Software Ltd 47

A Windows service is a long-running executable that performs specific functions and

which is designed not to require user intervention.

To profile a Windows service, it must be installed on the computer on which the profiling

will take place. You can install your service using the installutil.exe utility which is

supplied with Microsoft Visual Studio.

To obtain results with source code, you must use a debug build of your .NET Windows

service.

Setting up the performance profiler

To profile Windows services, on the ANTS Performance Profiler Settings dialog box,

perform the following steps:

1. Under Choose application type to profile, click Windows service.

2. Select your .NET Windows Service from the drop down list. The service here is

named Sample Service.

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

4. If required, specify any Arguments that are to be used when running the service.

5. If required, change the performance counters to record; see Setting up Charting

Options.

Profiling Windows services

© Red Gate Software Ltd 48

6. Click .

If the service is not already started, ANTS Performance Profiler will start the service.

If the service is already started, ANTS Performance Profiler will restart the service.

During a profiling session you can obtain results by selecting areas of the timeline.

When you have finished profiling the service, click the Stop Profiling button in ANTS

Performance Profiler.

Profiling WCF services

If the service that you want to profile is implemented using the Windows Communication

Foundation (WCF), think of the service as a server in a server-client relationship.

© Red Gate Software Ltd 49

Set up ANTS Performance Profiler as described above but after you have clicked

, start interacting with the client program to call the service.

The service's communications with the client are included in the results.

© Red Gate Software Ltd 50

To profile a COM+ server application correctly, there are two main steps:

1. Change the COM+ server so that it can be profiled.

2. Set up ANTS Performance Profiler.

Change the COM+ server so that it can be profiled

ANTS Performance Profiler can only profile COM+ server applications which are activated

in a process provided by the system, not by the client. To do this, set the

ApplicationActivation attribute as follows:

[assembly: ApplicationActivation(ActivationOption.Server)]

If you cannot set this attribute (for example, if you do not have access to the source

code), you may still be able to profile the COM+ application by profiling the client

application. You should note, however, that:

 the resulting server application will not be a true COM+ application and will run in the

client process

 ANTS Performance Profiler will profile the client application, and will treat the COM+

server as a DLL invoked by the client.

Set up ANTS Performance Profiler

To profile COM+ server applications, on the ANTS Performance Profiler Settings

dialog box, perform the following steps:

1. Under Choose application type to profile, click COM+ server.

2. Use the dropdown list to select the COM+ server application that you want to

profile.

Click to update the list of COM+ server applications.

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

4. If you want to profile a client application's communications with the COM+ server:

a. Browse to the client application Executable.

b. If required, specify any command line Arguments that are to be used when

running the client application.

5. If required, change the performance counters to record; see Setting up Charting

Options.

Profiling COM+ server applications

© Red Gate Software Ltd 51

6. Click .

If the client application was specified, the client application starts.

If the client application was not specified, start it manually.

During a profiling session you can interact with the client application whilst your COM+

server is still being profiled. You obtain results by selecting areas of the timeline.

When you have finished interacting with your client application, and you are ready to

finish profiling the COM+ server, click the Stop Profiling button in ANTS

Performance Profiler.

© Red Gate Software Ltd 52

Profiling remote COM+ applications

The security architecture of COM+ does not allow COM+ applications to be started from a

Remote Desktop session with a GUI, or a terminal services session.

To profile COM+ applications remotely, type mstsc /console at a command prompt to

start a Remote Desktop session in console mode.

Note that all users who are logged on to the computer that you are connecting to will be

logged off when you connect.

Troubleshooting

Some COM+ server applications need to be fully trusted before being profiled. If profiling

the COM+ server does not work, you may need to make the application's code fully

trusted by setting the ApplicationAccessControl attribute as follows:

[assembly: ApplicationAccessControl(false)]

Note that you should not normally release the COM+ application in this trusted state.

© Red Gate Software Ltd 53

The procedure for profiling XBAP applications depends on whether the XBAP is locally-

hosted or remotely-hosted.

To profile locally-hosted XBAP applications

To profile locally-hosted XBAP applications, on the ANTS Performance Profiler

Settings dialog box, perform the following steps:

1. Under Choose application type to profile, click XBAP (local XAML browser

application).

2. Navigate to the XBAP application that you want to profile.

3. If required, change the performance counters to record; see Setting up Charting

Options.

4. Click .

Internet Explorer starts, and displays the XBAP application. Use the XBAP application

normally.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

When you have finished interacting with your XBAP application, click the Stop

Profiling button in ANTS Performance Profiler.

To profile remotely-hosted XBAP applications

To profile remotely-hosted XBAP applications, on the ANTS Performance Profiler

Settings dialog box, perform the following steps:

1. Under Choose application type to profile, click .NET executable.

2. Choose Internet Explorer as the .NET executable that you want to profile.

Internet Explorer is normally located in %ProgramFiles%/Internet Explorer/

3. Select the required Profiling mode, SQL and file I/O, and Profile child processes

options; see Working with Application Settings.

Note that line-level timings are not available when profiling XBAP applications.

Profiling XBAP applications

© Red Gate Software Ltd 54

4. If required, change the performance counters to record; see Setting up Charting

Options.

5. Click .

Internet Explorer starts. Navigate to the page which embeds the XBAP application, and

use the XBAP application normally.

During a profiling session you can interact with the profiler whilst your application is still

being profiled, and obtain results by selecting areas of the timeline.

When you have finished interacting with your XBAP application, click the Stop

Profiling button in ANTS Performance Profiler.

© Red Gate Software Ltd 55

ANTS Performance Profiler can attach to a .NET 4 process which is already running. This

feature allows you to start profiling your applications when performance problems are

noticed, without having to restart the application from scratch. This topic explains how to

do this, using a simple C# program (called Net4Process.exe), which counts down for 300

seconds.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Net4Process

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Countdown test process");

 int i = 300;

 int[] array = new int[301];

 while (i >= 0)

 {

 Console.WriteLine(i + " seconds");

 array[i] = i;

 i--;

 System.Threading.Thread.Sleep(1000);

 }

 }

 }

}

1. Start Net4Process.exe from the command prompt.

2. When the countdown starts, open ANTS Performance Profiler.

3. In the ANTS Performance Profiler Settings dialog, under Application Settings, select

Attach to a .NET 4 process.

Attaching to a running .NET 4 process

© Red Gate Software Ltd 56

A list of the processes currently running is displayed with the .NET framework version

that they use. Processes that are not .NET 4 processes are unavailable.

4. Select Net4Process and click Start Profiling.

5. When the application has finished (or if you press ANTS Performance Profiler's Stop

Profiling button), the results are shown in the call tree in ANTS Performance Profiler.

© Red Gate Software Ltd 57

As expected, almost 100% of the time is spent in Main() and the increasing amount of

memory used by the program can be seen in the timeline.

If you need to save results for analysis later, attaching ANTS Performance Profiler to a

running process means that you can save just the results you need, helping to reduce the

size of the results file. This is particularly useful for line-level timings for all methods.

© Red Gate Software Ltd 58

You can use ANTS Performance Profiler 6.3 Professional to profile database queries sent

by an application to a Microsoft SQL server instance.

You might want to profile SQL queries if performance timings have revealed that a line of

code involving a database query is particularly slow.

Note that:

 profiling SQL queries is not possible with SQL Server Express: Because SQL Server

Express does not expose performance counters, ANTS Performance Profiler cannot
obtain results.

 the SQL Server instance must be on the same computer that the profiler is running
on.

 you can only profile SQL queries on Windows Vista or later, or Microsoft Server 2008.

Setting up SQL profiling

Before profiling SQL, we recommend that you check for performance issues in your code

(and any third-party code). Profile SQL when you have identified a slow line of code that

involves a SQL query.

Set up a new profiling session using the Application Settings dialog.

Profiling SQL queries

© Red Gate Software Ltd 59

Ensure that SQL and file I/O: is set to Record SQL and file I/O performance.

Viewing SQL results while profiling

1. Drag to select the portion of the timeline that you are interested in.

© Red Gate Software Ltd 60

2. Click SQL Server.

3. Note that the timeline is not automatically updated while profiling SQL queries. To

display queries performed since you switched to SQL Server view, click Update.

The timeline and the Query panel update to show the latest data.

© Red Gate Software Ltd 61

Viewing SQL results after profiling

If profiling is not currently in progress, click SQL Server.

SQL results for the entire complete profiling session are displayed on the timeline.

Tips

Long-length queries

If the SQL query is a multi-line query, or is just very long, it may be truncated in the

Query list. To display the full query, select it. The query is shown in the scrollable SQL

Source Code panel.

© Red Gate Software Ltd 62

Note that the Hit Count, Avg Time and Time columns are empty in the SQL Source Code

panel, because line-level timings are unavailable for SQL Server. See the Hit Count and

Time columns in the Query list to view the time taken by the entire query.

Linking back to your code

To find out which of your code's methods ran a particular SQL query:

1. Select the time when the query ran on the timeline. Include some time just before the

SQL query ran, and the server load increased: this will ensure your selected range

includes the time when the method that runs the query was called.

© Red Gate Software Ltd 63

2. Switch back to Performance view.

3. Under Tree View Display Options, select Top-down (methods with source).

© Red Gate Software Ltd 64

4. In the tree view, the method that ran the SQL query should be found near the

highlighted method.

Browse the line-level timings to find code that could be optimized.

© Red Gate Software Ltd 65

You can use ANTS Performance Profiler 6.3 Professional to profile when the application

that you are profiling reads from discs or writes to discs (including network drives).

Note that you can only profile File I/O on Windows Vista or later, or Microsoft Server

2008.

Setting up File I/O profiling

Before profiling File I/O, we recommend that you check for performance issues in your

code (and any third-party code).

To enable File I/O profiling, set up the profiler in the same way that you would configure

the settings for performance profiling. Ensure that SQL and file I/O: is set to Record

SQL and file I/O performance.

While profiling in Performance view, set the Tree View Display Options to show Wall-

clock time, because CPU time does not include time spent blocked waiting for File I/O.

When you have identified a slow line of code, which involves a reading from or writing to

a disc, profile File I/O.

Profiling File I/O

© Red Gate Software Ltd 66

Viewing File I/O results while profiling

1. Drag to select the portion of the timeline that you are interested in.

2. Click File I/O.

© Red Gate Software Ltd 67

3. Note that the timeline is not automatically updated while profiling File I/O. To display

queries performed since you switched to File I/O view, click Update.

Viewing File I/O results after profiling

If profiling is not currently in progress, click File I/O.

Linking back to your code

To find which of your code's methods caused File I/O to occur:

1. Select the time when the I/O occurred on the timeline. Include some time just before

the I/O because the method which caused the I/O will be called before the I/O takes

place.

© Red Gate Software Ltd 68

2. Switch back to Performance view.

3. Under Tree View Display Options, select Top-down (methods with source).

4. In the tree view, the method which caused the File I/O should be found near the

highlighted method.

© Red Gate Software Ltd 69

Use the line-level timings to look for code that could be optimized.

© Red Gate Software Ltd 70

MSTest is a software unit testing framework developed by Microsoft, which lets you

create, manage, and run unit tests from within the Visual Studio IDE, as well as from the

command line.

This topic assumes that you are familiar with MSTest, and have already built an assembly

full of tests that you want to profile.

Setting up the performance profiler

Before you start profiling, you will need a debug build of your test assembly.

Start ANTS Performance Profiler (or use the New Profiling Session option on the File menu

if ANTS Performance Profiler is already running).

On the Performance Profiler Settings dialog box:

1. Set the application type to profile to .NET executable.

Setting up MSTest

© Red Gate Software Ltd 71

2. Set the .NET executable box to the path where MSTest.exe is installed. For

example: C:\Programs\Microsoft Visual Studio 9.0\Common7\IDE\MSTest.exe

Setting the arguments

In the Arguments box, set a /testcontainer argument to tell MSTest the path to the

assembly that contains all of the tests. For example:

/testcontainer:"C:\Profiles\<USER NAME>\My Documents\Visual Studio 2008\Projects\Lo

ginForm\MyTests\bin\Debug\MyTests.dll"

On the Performance Profiler Settings dialog select the Charting Options tab.

Choose the performance counters which you want to record.

Starting the profiler

Click .

MSTest starts and executes all of the tests contained within the assembly.

© Red Gate Software Ltd 72

Getting results

During a profiling session, you can interact with the profiler while your tests are still being

profiled.

To finish the tests, you can either wait for MSTest to complete and exit, or press the Stop

Profiling button in ANTS Performance Profiler.

ANTS Performance Profiler shows the results of the tests. You can investigate the results

in exactly the same way as with any .NET application. This allows you to spot any big

bottlenecks in your tests quickly.

© Red Gate Software Ltd 73

You can profile applications from the command prompt in ANTS Performance Profiler

Professional.

To run a profiling session from the command prompt, run Profile.exe with the appropriate

options.

For example, to profile an executable called SimpleApp.exe using line-level timings and

saving results as a CSV, use:

Profile.exe /e:"C:\testing\SimpleApp.exe" /ll /csv:"C:\testing\results.csv"

Profiling applications from the command prompt is useful if you want to integrate

performance profiling in an automated test procedure; see Integrating ANTS Performance

Profiler in a test procedure.

Profiling IIS from the command line

You cannot currently profile applications which run on IIS from the command line. To

work around this limitation:

1. Profile IIS from the ANTS Performance Profiler graphical user interface.

2. When you have finished profiling, on the File menu, click Save Project.

3. Use the /project argument on the command line to load the saved project.

List of command line arguments

/help (Alias: /?)

Displays this help message. Use in conjunction with /verbose for more detailed

information.

If this switch is used with any switches other than /verbose, /html, /out, /force or

/outputwidth then those switches will be ignored, the help message will be printed, and 0

will be returned as the process exit code.

/html

Causes help to be output as HTML.

Must be used with the /help switch.

/quiet (Alias: /q)

Quiet mode - no output.

Profiling from the command line

© Red Gate Software Ltd 74

/verbose (Alias: /v)

Verbose mode.

/force (Alias: /f)

Forces overwriting of output files that already exist. If this flag is not set and a file

already exists then program will exit with an exit code indicating an I/O error.

/argfile:<argfile>

File containing the XML argument specification.

/out:<fileName>

Redirects console output to the specified file.

/project:<project> (Alias: /p)

A performance profiler project that should be used to begin profiling.

/executable:<executable> (Alias: /e)

An executable to run in the profiler.

/arguments:<arguments> (Alias: /args)

The arguments to pass to the executable.

/workingDirectory:<workingDirectory> (Alias: /wd)

The working directory to use when profiling the application.

/port:<port>

The port that web applications should be profiled on. (Default: 8013)

/cassini (Alias: /webdev)

Profiling should be performed on the ASP.NET web development server (Cassini).

© Red Gate Software Ltd 75

/cassiniPath:<cassiniPath> (Alias: /cpath)

The location of the ASP.NET project to use with the ASP.NET web development server

(Cassini).

/cassiniVirtualDirectory:<cassiniVirtualDirectory> (Alias: /cvd)

The virtual directory to use for the ASP.NET web development server (Cassini).

/cassiniNetVersion:<cassiniNetVersion> (Alias: /cnv)

If Visual Studio 2010 is installed, this is the version of .NET to use when running the web

development server (Cassini). Default: 0

/service:<service>

The name of a Windows service to profile.

/complus:<complus>

The name of a COM+ server to profile.

/silverlight:<silverlight>

The URL of a site containing a Silverlight application to profile.

/RecordSqlIo (Alias: /rs)

The profiler should try to record SQL and File I/O events.

/profileSubprocesses (Alias: /sp)

The profiler should profile both the target and any child processes it spawns.

/timeout:<timeout> (Alias: /t)

The number of seconds to wait before terminating the target process. Set to 0 to indicate

that no timeout should be used. The default is 120 seconds.

/lineLevel (Alias: /ll)

The profiler should record line-level timings as well as method-level timings.

© Red Gate Software Ltd 76

/methodLevel (Alias: /ml)

The profiler should record only method-level timings (the default).

/onlyWithSource (Alias: /ows)

The profiler should only record values for methods which have source code files specified

in their debugging data (pdb) files.

/sampling (Alias: /sm)

The profiler should use sampling to produce approximate results quickly.

/includeSource:<includeSource> (Alias: /is)

Whether or not the results should include the source code. Permitted values are on and

off. The default is on.

/inlining:<inlining> (Alias: /in)

Default: on

Whether or not the profiler should allow .NET to inline functions. Turning this off will

produce results for more methods, at the expense of a less accurate reflection of the

processes performance. Permitted values are on and off. The default is on.

/compensate:<compensate> (Alias: /comp)

Whether or not the profiler should adjust results to account for its own overhead.

Permitted values are on and off. The default is on.

/simplify:<simplify> (Alias: /simp)

Whether or not the profiler should simplify certain complicated stack traces to reduce

resource requirements. Permitted values are on and off. The default is on.

/avoidTrivial:<avoidTrivial> (Alias: /notriv)

Whether or not the profiler should avoid extremely trivial functions to reduce resource

requirements. These functions have a low hit count and a running time of only a few

processor cycles. Permitted values are on and off. The default is on.

© Red Gate Software Ltd 77

/aspxPages:<aspxPages> (Alias: /aspx)

Whether or not the profiler should profile the compiled contents of ASPX pages as well as

the code that lies behind them. Turning this option on may considerably increase the

amount of time the application spends in the JIT. Permitted values are on and off. The

default is off.

/threshold:<threshold>

The threshold time in percent that a method must have used in order to be included in

the report. Set to 0 to include all results. The default is 0.1.

/csv:<csv>

The name of a file to write a summary of the profiler results as CSV data to.

/xml:<xml>

The name of a file to write a summary of the profiler results as XML data to.

/htmlreport:<htmlreport> (Alias: /h)

The name of a file to write a summary of the profiler results as an HTML report.

/calltree:<calltree>

The name of a file to write a summary of the call tree profiler results as XML data to.

/calltreehtml:<calltreehtml> (Alias: /cth)

The name of a file to write a summary of the call tree profiler results as an HTML report.

/data:<data>

The name of a file to save the profiler results to. The contents of this file can be inspected

using the ANTS Performance Profiler desktop application.

Exit Codes

If an error occurs, the following exit codes may be displayed:

0 Success.

1 General error code.

© Red Gate Software Ltd 78

3 Illegal argument duplication. Some arguments may not appear more than once in

a command-line. If such arguments appear more than once this exit code will be

returned.

8 Unsatisfied argument dependency or violated exclusion when user runs command

line.

 For example, /arg2 depends on /arg1 but you have specified /arg2 without

specifying /arg1, or alternatively /arg2 cannot be used with /arg1 but you have tried to

use them both.

32 Value out of range. Numeric value supplied for an argument that is outside the

range of valid values for that argument.

33 Value overflow. The magnitude of a value supplied for an argument is too large

and causes an overflow.

34 Invalid value. The value supplied for an argument is invalid.

35 No / invalid software license or trial period has expired.

64 General command-line usage error.

65 Data error. Some input data required by the tool is invalid or corrupt.

69 A resource or service required to run the tool is unavailable.

73 Failed to create report

74 IO error occurred. Generally returned if the program attempts to write to a file

that already exists without the user having specified the /force option.

77 Action cannot be completed because the user does not have permission.

126 Execution failed because of an error.

130 Execution stopped because Ctrl+Break.

Examples of CSV and XML results files

This section exemplifies the format of the CSV and XML results files that can be saved

when profiling from the command line.

The examples are for the Mandelbrot.Form1.DrawMandelbrot() method. For

comparison, the following screenshots show the data for the same method when

displayed in the GUI.

With CPU time selected (i.e. excluding time elapsed while a thread was blocked) :

© Red Gate Software Ltd 79

With Wall-clock time selected (i.e. showing total time elapsed, including blocking):

In XML format:

<Method class="Mandelbrot.Form1" name="DrawMandelbrot" PID="3276" has-

source="yes">

<HitCount>4</HitCount>

<CPU ticks="3943998009" millisecs="1274.7710" percent="31.1234" />

<Wallclock ticks="3944321017" millisecs="1274.8746" percent="9.2591" />

<WithSelf ticks="46780075" millisecs="18.0000" percent-cpu="0.3692"

percent-wallclock="0.1098" />

</Method>

In CSV format (with headings row):

(Note that spaces have been added between each field to ensure that the lines in this example wrap.)

Method type, Class, Method, Hit count, CPU %, CPU milliseconds, CPU ticks,

Wallclock %, Wallclock milliseconds, Wallclock ticks, CPU % time with self,

Wallclock % time with self, Milliseconds with self, Ticks with self

, Mandelbrot.Form1,DrawMandelbrot(), 4, 31.1234417769152, 1274.77098086476,

3943998009, 9.25905031694744, 1274.87463378906, 3944321017,

0.369157625652905, 0.109813340848462, 18.0000198185444, 46780075

© Red Gate Software Ltd 80

Integrating ANTS Performance Profiler in your existing automated test framework ensures

that you are alerted whenever a change is made that would adversely affect your

application's performance.

To integrate ANTS Performance Profiler in automated tests, you perform three general

steps:

1. Profile your application from the command line, saving the results to a CSV or XML

file.

2. Read the results into the test harness.

3. Make assertions about the data you have read.

This topic describes these three steps in more detail.

1. Profiling your application from the command line

For automated tests, you do not need much detail in the results. We recommend that you

either profile using method-level timing only, or that you profile in sampling mode.

To profile your application from the command line:

1. Choose whether you only need method-level timings, or whether you want to run the

tests in sampling mode.

2. Choose whether you prefer results in CSV or XML format.

To assist your decision, see Examples of CSV and XML results files

(/supportcenter/Content.aspx?p=ANTS Performance

Profiler&c=ANTS_Performance_Profiler/help/6.2/app_commandline.htm&toc

=ANTS_Performance_Profiler/help/6.2/toc1408011.htm#o14306).

3. Set the command line arguments to reflect your choices.

For example, to profile SimpleApp.exe, using method-level timings (the default) and

saving results to a CSV file, run:

Profile.exe /e:"C:\testing\SimpleApp.exe" /csv:"C:\testing\results.csv"

/data:"C:\testing\results.app6results"

To profile SimpleApp.exe, using sampling and saving results to a XML file, run:

Profile.exe /e:"C:\testing\SimpleApp.exe" /sm /xml:"C:\testing\results.xml"

/data:"C:\testing\results.app6results"

Note that in these examples, the .app6results file is also saved. The .app6results file is

not used for integrating with the test procedure, but saving it ensures that you can

investigate any problems without needing to profile your application again.

For a full list of arguments you can use when profiling at the command line, see Profiling

from the command line (API).

Integrating ANTS Performance Profiler in a test procedure

/supportcenter/Content.aspx?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_commandline.htm&toc=ANTS_Performance_Profiler/help/6.2/toc1408011.htm#o14306
/supportcenter/Content.aspx?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_commandline.htm&toc=ANTS_Performance_Profiler/help/6.2/toc1408011.htm#o14306
/supportcenter/Content.aspx?p=ANTS%20Performance%20Profiler&c=ANTS_Performance_Profiler/help/6.2/app_commandline.htm&toc=ANTS_Performance_Profiler/help/6.2/toc1408011.htm#o14306

© Red Gate Software Ltd 81

2. Read the results into the test harness

Write a simple command line application to read the CSV or XML data.

For information on how to read XML data in C# using the XMLTextReader class, see How

to read XML from a file by using Visual C# (http://support.microsoft.com/kb/307548)

(Microsoft.com)

3. Make assertions about the data you have read

Using your automated test framework, ensure that the performance data is within a

reasonable bound for each method that you are interested in.

For example, if you know from experience that exampleMethod() normally takes about

0.02 seconds of CPU time, you assert that the time taken by exampleMethod() must not

be longer than 0.02 seconds + 20% (0.024 seconds).

In the NUnit test framework:

Assert.Greater(0.024, double exampleMethodTime);

http://support.microsoft.com/kb/307548

© Red Gate Software Ltd 82

The ANTS Performance Profiler Visual Studio add-in allows you to:

 Launch ANTS Memory Profiler from your IDE.

 Switch straight to your source code from ANTS Performance Profiler.

Launching ANTS Performance Profiler from Visual Studio

Installing the add-in adds a new ANTS menu in Visual Studio. If you also have ANTS

Memory Profiler installed, both profilers will be available under this menu.

Build your solution in Visual Studio and then select Profile Performance to profile the

build.

Switching to your source code from ANTS Performance Profiler

So that ANTS Performance Profiler can identify classes with source code, you must ensure

that the .pdb file is in the same directory as the application. See Resolving .PDB problems

for more details.

You can switch to source code from the call tree and the methods grid. In both, classes

with source code are shown in bold. You can use the Find bar to search for your class's

namespace.

Right-click a class with source code to show the context menu.

To open only the source code associated with that class, select Open with new

instance of Visual Studio 20xx.

Using the Visual Studio add-in

© Red Gate Software Ltd 83

It is often more useful to open the source code inside its solution. To do this, open the

solution in Visual Studio. Return to ANTS Performance Profiler and open the context

menu. On the context menu, select Open with (Solution Name) - Microsoft Visual

Studio (Visual Studio 20xx).

Troubleshooting

 If the path to the source code in the .pdb file is invalid, the class is still shown in bold,

but the context menu does not display the Visual Studio options. Recompile the

application on the computer you are using to profile it.

 If the solution was opened with elevated privileges (Visual Studio is running as

administrator), the option for opening the source code inside the solution might not

be shown. Restart Visual Studio under the same credentials as ANTS Performance
Profiler.

 The Visual Studio add-in is a separate program from ANTS Performance Profiler, and

is installed by default as part of Red Gate's .NET Developer Bundle. If you purchased

ANTS Performance Profiler as a standalone product, you might not have the add-in. In

that case, download the free trial of the .NET Developer Bundle (http://www.red-

gate.com/products/dotnet-development/dotnet-developer-bundle/) from the Red Gate

website and install ANTS Profiler Visual Studio Add-in 1.0. You do not need a new

license for the add-in, and the add-in will not expire when the bundle's trial period
ends.

http://www.red-gate.com/products/dotnet-development/dotnet-developer-bundle/
http://www.red-gate.com/products/dotnet-development/dotnet-developer-bundle/

© Red Gate Software Ltd 84

Once you have run a profiling session and displayed some profiling results you can start

analyzing the results in the results pane using the three main display types: call tree,

methods grid, and call graph.

Use the buttons on the timeline pane to switch between display types:

Call tree: shows stack traces that were executed by

your application during the time period you have

selected.

Methods grid: lists each method that was executed by

your application during the time period you have

selected.

Call graph: shows the calling relationships between

methods executed by your application, for the time

period you have selected.

(The call-graph button is disabled until you have

created a new call graph.)

The ANTS Performance Profiler user interface

© Red Gate Software Ltd 85

Once you have run a profiling session and displayed some profiling results you can start

analyzing the results in the results pane using the three main display types: call tree,

methods grid, and call graph.

Use the buttons on the timeline pane to switch between display types:

Call tree: shows stack traces that were executed by

your application during the time period you have

selected.

Methods grid: lists each method that was executed by

your application during the time period you have

selected.

Call graph: shows the calling relationships between

methods executed by your application, for the time

period you have selected.

(The call-graph button is disabled until you have

created a new call graph.)

Working with profiling results

© Red Gate Software Ltd 86

The timeline is visible throughout a profiling session, and provides a frequently updated

display of performance-counter values and instances of events related to the application

you are profiling. You can use this overview of application activity to isolate performance-

profiling results for specific time periods.

The timeline enables you to select a region (corresponding to a time period during

execution of your application) for which you wish to display profiling results. You can

select and reselect any region as often as you need to, both during profiling and after you

have stopped profiling and closed your application. You can also create bookmarks for

selected regions, enabling you to define multiple regions and switch between them to

look at data for different periods during a profiling session.

The main section of the timeline shows the values for a selection of Windows performance

counters. You can choose which performance counters to display before you start profiling

your application. See Setting up performance counters for more information.

The event bar on the timeline shows event markers. These indicate when certain types of

event occur within your application, for example, button clicks, window activations, and

exceptions. When you move the mouse pointer over an event marker a tooltip provides

more information about the event. See Working with event markers and method events

for more information.

Working with regions on the timeline

You can select, clear, and bookmark regions on the timeline. Whenever you select a

region, profiling results are displayed that relate to the selected period only.

Selecting a region

To select a region, click and drag the mouse pointer across the timeline. The results

pane (beneath the timeline) updates to show profiling results for the selected region.

Working with the timeline

© Red Gate Software Ltd 87

Resetting a region

To reset the currently selected region to cover the whole timeline, click Select All. The

results pane updates to show profiling results for the entire time period for which your

application was running.

Bookmarking a region

You can create a bookmark on the timeline, for a selected region. This is useful if there

are several periods for which you want to view or compare profiling results: you can

easily switch between bookmarked regions to redisplay profiling results.

To bookmark a selected region, click within the selected region. This region is now

bookmarked (this is indicated by a highlighted bar at the top of the timeline). To select

this region again later, click within the highlighted bar.

You can name a bookmark to make it easier to identify. To name a bookmark, click the

highlighted bar for the bookmark and click . The name you type will be shown on the

bookmark's tooltip.

To delete a bookmark, click the highlighted bar for the bookmark and click .

Adjusting the time scale

You can change the time scale to view performance-counter data in more or less detail by

rotating the mouse wheel, or by using the zoom-control buttons (zoom in , zoom out

, and zoom to fit). You can also use the following keyboard shortcuts: CTRL+PLUS to

zoom in; CTRL+MINUS to zoom out.

To pan the main timeline, move the mouse pointer over the highlighted area in the

overview timeline (), and drag to the left or right.

© Red Gate Software Ltd 88

Working with performance counters

The performance counters available for the current profiling session are listed to the left

of the timeline. You can choose which performance counters to display when you set up a

new profiling session (see Setting up performance counters).

To highlight a particular performance counter on the timeline, click its description in the

Performance Counters list. Values for the selected performance counter are shown on

a tooltip when you move your mouse pointer over the main timeline.

Working with event markers and method events

The events bar (directly above the main timeline) indicates when certain events occurred

within the application you are profiling. To display more information about the event,

move your mouse pointer over an event marker.

Events are displayed using colored markers:

Event type Color

Exception

Click

Window activated and window closed

All other events

If you click on a method in the call tree or on the methods grid (and when you display the

call graph for a method), the times when that method executed are shown as light green

areas in the events bar. These areas are called 'method events'. If the method called

unmanaged code, the period when the unmanaged code ran is shown as dark green.

Adding custom event markers

It is possible to add your own event markers to the timeline. For example, you might

want to know when a certain item is loaded into memory or when an ASP.NET page is

loaded or unloaded. To add a custom marker:

© Red Gate Software Ltd 89

1. Copy

%ProgramFles%/Red Gate/ANTS Performance

Profiler 6/RedGate.Profiler.UserEvents.dll

to your application's bin folder. (Create the bin folder using Windows Explorer if it

does not already exist.)

2. Reference the DLL from your application.

3. Add the following line to your application wherever you want to see an event marker

on the profiler's timeline. (Replace 'The message' with a short description of the

event.)
RedGate.Profiler.UserEvents.ProfilerEvent.SignalEvent("The message");

4. When you profile your application, the event is shown in the ANTS Performance

Profiler timeline with a black event marker. Move your mouse over the event marker

to display the message.

Note that you cannot use custom event markers when profiling Silverlight applications.

© Red Gate Software Ltd 90

The call tree shows the stack traces that were executed by your application during the

time period you have selected. By default, stack traces are displayed top-down (calling

method above called method). The "hottest" stack trace (the one that took the most time

to run) is displayed at the top of the call tree, and is automatically expanded. If a method

was called in several contexts, it is displayed once for each context in the call tree.

See Tips on using the call tree for more information on how to use the call tree

effectively.

The following data is shown for each method within the stack trace, for the selected time

period:

 Time: the total execution time for the method within this stack trace.

 Time With Children: the total execution time for the method and all its children

within this stack trace.

 Hit Count: the number of times the method was called within this stack trace.

When time is shown as a percentage, the Time (%) for each method shows the

proportion of the total execution time that the method contributed during the selected

period. The total percentage for all methods can sum to over 100 on machines using

multiple CPU cores.

Each method is shown with one of the following icons:

 Root method or leaf method. Root methods are not called by any

other method; leaf methods do not call any other method.

 Indicates call flow when the call-tree direction is top-down (calling

method above called method).

 Indicates call flow when the call-tree direction is bottom-up (called

method above calling method).

 Method is part of the hottest (longest running) stack trace. Used

instead of the root/leaf or call-flow icons.

* A method name followed by an orange asterisk: Method is

optimizable.

Working with the call tree

© Red Gate Software Ltd 91

Methods listed in bold have source code available. To display the method's source code,

click any bold method. Line-level timings are also available in the source-code pane if you

use one of the Line-level ... profiling modes.

You may also see the following items in the call tree. These are shown in bold orange

text, and represent time spent in your application that is in addition to time spent

executing specific methods:

 Waiting for synchronization: A thread was waiting. For example, if you have called

the Monitor.Wait method, the thread will wait for synchronization until the lock is

reacquired. Another cause is that the finalizer thread spends most of its time waiting.

Expand the call graph to see what caused the wait. Items that are Waiting for

synchronization only contribute to timings in the call tree when the Timing display

option is set to Wall-clock time. To exclude time due to Waiting for synchronization

items, select CPU time from the Timing display option.

 Thread blocked: The executing thread was blocked. For example, the thread may

have been sleeping, or waiting for access to a shared resource. Thread blocked items

only contribute to timings in the call tree when the Timing display option is set to

Wall-clock time. To exclude time due to Thread blocked items, select CPU time from
the Timing display option. The call-tree display options are described below.

 Waiting for I/O to complete: The executing thread was blocked waiting for file I/O.

Waiting for I/O to complete items only contribute to timings in the call tree when the

Timing display option is set to Wall-clock time. To exclude time due to Waiting for I/O

to complete items, select CPU time from the Timing display option. The call-tree

display options are described below.

 Transition to unmanaged code: A transition from managed code to unmanaged

code occurred at this point in the stack trace. In general, line-level and method-level

timings are not available for the unmanaged code. However, for unmanaged methods

that are declared with extern within managed code, method-level timings are

available.

 Transition to managed code: A transition from unmanaged code to managed code
occurred at this point in the stack trace.

 JIT overhead: JIT compilation occurred at this point in the stack trace during

execution of your application. The method that needed to perform the compilation is
shown as the parent of a JIT overhead item.

 Profiler overhead: Additional overhead introduced by ANTS Performance Profiler.

This is unlikely to be seen when the option to adjust timings to compensate for
overhead added by the profiler is enabled.

 Assembly load or unload: A .NET assembly was loaded or unloaded.

 Module load or unload: A .NET module was loaded or unloaded.

To create a new call graph based on a particular method, select the method in the call

tree, and click the new call graph button in the Method column.

© Red Gate Software Ltd 92

Changing the call-tree display options

You can change the way data is displayed in the call tree, using the display options on the

results toolbar:

 Direction and scope: controls whether the call tree is displayed top-down (calling

methods above called methods) or bottom-up (called methods above calling

methods), and also whether any method, or only methods with source, are shown. If

you choose an option that shows any method, the call tree will include details for .NET
Framework class-library methods.

 Threads: filters the display of stack traces by thread.

 Timing: controls the way in which method timings are calculated. You can choose

from Wall-clock time which includes blocking such as waiting for I/O, or CPU time

which excludes blocking.

 Hide insignificant methods: select this check box to hide methods that contribute
less than 1% of the total execution time for the currently selected time period.

You can also:

 Change the time unit. On the View menu, click Percentages, Ticks, Milliseconds,
or Seconds.

 Reorder the call tree. To change the stack-trace order, click the Time With Children

(%) column heading.

Tips on using the call tree

To locate methods that may be good candidates for optimization:

1. Order the call tree with the slowest stack traces at the top (top-down). If necessary,

click the Time With Children column heading to change the stack-trace order.

2. Starting with the slowest stack traces, look for method pairs where subsequent values

for Time With Children reduce substantially as you move down the stack trace.

Methods with higher values in such pairs may be good candidates for optimization.

ANTS Performance Profiler can optionally suggest methods that may be good

candidates for optimization. To show suggested methods, on the Tools menu, click

Suggest methods to optimize. Suggested method names are marked with an

asterisk (*).

In general, the better you understand the structure and meaning of your code, the

more easily you will be able to interpret the data collected by the profiler.

To reduce the number of methods shown, you can do any of the following:

© Red Gate Software Ltd 93

 Choose a "(methods with source)" option from the Direction and scope list in the
display options.

 Select the Hide insignificant methods check box in the display options.

 Select a shorter region on the timeline.

To find a particular method:

1. On the Tools menu, click Find.

The Find bar is displayed beneath the call tree.

2. Type all or part of the method name you are looking for, and press ENTER.

The first matching row in the call tree is highlighted.

Click Previous or Next to move between matching method names.

© Red Gate Software Ltd 94

The methods grid lists each method that was called by your application during the time

period you have selected. Even if a given method is called in several contexts, it is shown

only once in the methods grid, with aggregated data that accounts for all contexts. You

can order the data by any column by clicking the column heading. Data is ordered by

Time With Children by default.

The following data is shown for each method, for the time period you have selected:

 Time: the total execution time for the method (in all contexts).

 Time With Children: the total execution time for the method and all its children.

 Hit Count: the number of times the method was called.

Methods listed in bold have source code available. To display the method's source code,

click any bold method. Line-level timings are also available in the source-code pane if you

used the Line-level and method-level timings; all methods or Line-level and method-level

timings; only methods with source profiling mode.

Changing the methods-grid display options

You can change the way data is displayed in the methods grid, using the display options

on the results toolbar.

Working with the methods grid

© Red Gate Software Ltd 95

 Scope: controls whether any method, or only methods with source, are shown. If you

choose to display any method, the methods grid will include details for .NET

Framework class-library methods.

 Threads: filters the display of stack traces by thread.

 Timing: controls the way in which method timings are calculated. You can choose

from Wall-clock time which includes blocking such as waiting for I/O, or CPU time
which excludes blocking.

 Hide insignificant methods: select this check box to hide methods that contribute

less than 1% of the total execution time for the currently selected time period.

Tips on using the methods grid

To find particular methods:

1. On the Tools menu, click Find.

The Find bar is displayed beneath the methods grid.

2. Type all or part of the method name you are looking for.

As you type, the methods are filtered to display only those that match your text.

© Red Gate Software Ltd 96

The call graph shows the calling relationships between methods during the execution of

your application, and is focused on a method of your choice (the base method; shown in

black in the example below). If a given method is called in several contexts, it is shown

once for each context in the call graph. The base method is shown only once in the call

graph, unless it is called recursively.

Selecting a base method makes it easy for you to visualize all the callers and callees for

that method.

The percentage value shown in each method is calculated with respect to the base

method as follows:

 For a method called by the base method, this is the percentage of the base method's

execution time that the method accounts for, relative to the base method's total

execution time.

 For a method that calls the base method, this is the percentage of the base method's

total execution time that is due to the calling method.

Calculations are always made with respect to the selected region on the timeline, or the

whole profiling period if you have not selected a region.

Working with the call graph

© Red Gate Software Ltd 97

Creating a new call graph

Every instance of a call graph is based on a particular method, so you must first select a

method in the call tree, methods grid, or source code, then click the create new call

graph button :

Alternatively, right-click the method and select Create new call graph on the short-cut

menu.

The call graph is displayed in the results pane.

Changing the call-graph display options

You can change the way data is displayed in the call graph, using the display options on

the results toolbar:

 Weighting: controls the way that methods are drawn on the call graph.

Equal weighting to all methods is useful when you need to see how methods without

source code (for example, .NET Framework library methods) affect the execution

times in your application. Emphasize methods with source draws the call graph with

much smaller boxes for those methods that do not have source code available. This

allows you to concentrate on the timings for those methods for which you have the

source code.

 Timing: controls the way that method timings are calculated. You can choose from

Wall-clock time which includes blocking such as waiting for I/O, or CPU time which

excludes blocking.

 Hide insignificant methods: select this check box to hide methods that contribute

less than 1% of the total execution time (for the currently selected time period).

You can also change the time unit. On the View menu, click Percentages, Ticks,

Milliseconds, or Seconds.

© Red Gate Software Ltd 98

Navigating the call graph

You can resize the call graph by rotating the mouse wheel, or by using the zoom controls

to the left of the call graph. You can pan the call graph by clicking and dragging on a

blank part of the graph.

To expand a method on the call graph (that is, to show the method's immediate children

or parents), click the method.

To expand the most expensive path from a particular method, hold down the CTRL key

and click the method. Alternatively, right-click and select Expand most expensive

stack trace.

To expand the most expensive path for all children from a particular method, hold down

the SHIFT key and click the method. Alternatively, right-click and select Expand most

expensive stack trace for all callees.

To expand the most expensive path for all parents of a particular method, hold down the

SHIFT key and click the method. Alternatively, right-click and select Expand most

expensive stack trace through all callers.

To collapse a method on the call graph, double-click the method.

More about call graphs

Methods are drawn in several different styles in a call graph:

Base method (the method

you chose when creating

the call graph). Execution-

time percentages are

calculated with respect to

this method.

Method with source code.

Method without source

code. This style is used

when all methods have

equal weighting.

Method without source

code. This style is used

when methods with source

code are emphasized.

© Red Gate Software Ltd 99

Selected method. When a

method is selected, all

methods in that stack trace

are also outlined in red.

Recursive method. The

symbol is added to any

method that is called

recursively within your

application.

Call graphs always include methods for which no source code is available (for example,

methods from the .NET Framework class library) and methods for all threads running in

your application during profiling.

It is not possible to change the time period covered by an existing call graph. To create a

call graph for a different time period, return to the call-tree or methods-grid display,

reselect the required period on the timeline, and create a new call graph.

© Red Gate Software Ltd 100

When you select a method in the results pane and source code is available for that

method, the code is displayed in the source-code pane with the first line of the method

body highlighted. You can also profile and navigate code decompiled using Red Gate’s

.NET Reflector VSPro (http://www.reflector.net/) in the same way as the original source

code.

If you used Line-level and method-level timings; all methods or Line-level and method-

level timings; only methods with source profiling mode, line-level timings are shown for

each line of code (as well as average time and hit count). Note that line-level timings are

unavailable for Silverlight applications.

Navigating through source code

You can navigate through the source code for a particular file in several ways:

 To jump directly to lines of code that accounted for the most execution time, use the

heat map alongside the vertical scroll bar. Colored bars indicate the location of the
slowest lines of code in the source-code file:

Click a bar to jump to the relevant line. The heat map is not available if you did not

collect line-level timings.

Working with source code

http://www.reflector.net/

© Red Gate Software Ltd 101

 To jump directly to a particular method, select the method from the list directly above

the source code. A colored bar against each method indicates the relative time spent

within the method.

 To jump between methods from within the source code, click the method call. This

click-through navigation works for most method calls where the called method has

source code available.

 Use the forward and back history buttons.

You can also create a new call graph from within the source-code pane: right-click the

method that you want to base the call graph on, and select Draw Call Graph > <method

name>.

© Red Gate Software Ltd 102

ANTS Performance Profiler includes a number of options that are applied to all profiling

sessions. To access these options, on the Tools menu, click Options.

Unless you have a particular need to adjust the options, leave them at their default

settings. Changing the default setting for certain options may cause problems during

profiling.

Include source code with saved results

Enable inlining

Adjust timings to compensate for overhead added by the profiler

Simplify very complex stack traces to save memory

Avoid profiling extremely trivial functions

Include source code with saved results

Includes the contents of source files when you save profiling results. This means that you

can review line-level performance data in saved results, without having to restore your

source files to their original state.

You may want to clear this option if, for example, you need to distribute performance

profiling results for an application that has confidential source code.

By default, this option is selected.

ANTS Performance Profiler options

© Red Gate Software Ltd 103

Enable inlining

Enables inlining of methods by the .NET JIT compiler, for the process being profiled.

If you are profiling the release build of an application, selecting this option will produce a

profile that is closer to the "real-world" performance. However, the accuracy of the

results will be reduced. In particular, line-level timings will be distorted, hit counts will

not be recorded for inlined methods, and time spent in inlined methods will be reported

as part of the calling method.

By default, this option is not selected.

Adjust timings to compensate for overhead added by the profiler

Adjusts timings by estimating the influence the profiler has had on the process being

profiled, and subtracts this from the profiling results. This estimate is most accurate when

you use a profiling mode that does not collect line-level timings.

The design of modern processors means that this estimate may not always be accurate,

especially for short function calls.

By default, this option is selected.

Simplify very complex stack traces to save memory

Summarizes complex stack traces in profiling results. This conserves resources on the

machine you are using for profiling. The stack traces that are summarized are unlikely to

be important to your profiling results. However, if you wish to see these summarized

results, you can clear this option.

Clearing this option can significantly increase the memory required by the profiler.

Depending on the application you are profiling, the profiler may become unstable if you

clear this option.

By default, this option is selected.

Avoid profiling extremely trivial functions

Prevents profiling of methods that have a running time measured in tens of nanoseconds,

and which contribute to less than one-billionth of the run time in total. Typically, these

methods do not produce very relevant performance data. Ignoring these methods

reduces the amount of memory required to store and process profiling results.

By default, this option is selected.

© Red Gate Software Ltd 104

If the application you are profiling stops responding, fails to load, or closes unexpectedly,

the profiling process may have caused the profiled application to crash. If this happens,

you may not receive profiling results for your session, or you may receive incomplete

results captured before the crash.

This topic describes ways to troubleshoot crashes during profiling.

If your profiling session returns no results, or incomplete results, but does not hang or

crash, see Troubleshooting missing results.

Troubleshooting error messages

The application may crash with the following error messages:

 Operation could destabilize the runtime

 StackOverflow Exception

(This exception may be recorded only in the log file.)

Operation could destabilize the runtime

If your application crashes with the error "Operation could destabilize the runtime" during

line-level profiling, then the assembly or method you are profiling may have been marked

as SecurityTransparent (or, in .NET 3.5 and earlier, marked as partially trusted).

To prevent crashes of this type:

 In .NET 4: Set the application's code to SecurityCritical or SecuritySafeCritical

mode. (This requires the code to have full trust.)

For instructions on setting these attributes, see SecurityCriticalAttribute Class

(http://msdn.microsoft.com/en-

us/library/system.security.securitycriticalattribute.aspx)or

SecuritySafeCriticalAttribute Class (http://msdn.microsoft.com/en-

us/library/system.security.securitysafecriticalattribute.aspx).

 In .NET 3.5 and earlier: Set the application's code trust level to FullTrust.

For details, see Named Permission Sets (http://msdn.microsoft.com/en-

us/library/4652tyx7%28v=VS.85%29.aspx).

StackOverflow Exception

During line-level profiling, if the application you are profiling is very large or the profiling

session lasts a long time, a stack overflow can occur. If this happens, the application will

crash and may record a "StackOverflow Exception" error in the log. (For instructions on

finding the ANTS Performance Profiler logs, see Log files (http://www.red-

gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_fi

les).)

Troubleshooting application crashes

http://msdn.microsoft.com/en-us/library/system.security.securitycriticalattribute.aspx
http://msdn.microsoft.com/en-us/library/system.security.securitycriticalattribute.aspx
http://msdn.microsoft.com/en-us/library/system.security.securitysafecriticalattribute.aspx
http://msdn.microsoft.com/en-us/library/system.security.securitysafecriticalattribute.aspx
http://msdn.microsoft.com/en-us/library/4652tyx7%28v=VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/4652tyx7%28v=VS.85%29.aspx
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files

© Red Gate Software Ltd 105

To reduce the risk of an overflow, open the Tools menu, click Options, and select

Simplify very complex stack traces to save memory.

If this does not prevent the crash, try profiling in sampling mode: on the Application

Settings dialog box, set the Profiling mode to Sample method-level timings

(fastest, least detail, no hit counts).

Troubleshooting all crashes

If the application crashed but did not return either of the above error messages, try the

following approaches. They are listed in order of how likely they are to resolve common

causes of crashes.

Force your application to use .NET 4

Many crashes can be avoided by rebuilding the application as a .NET 4 executable, and

profiling it using the Attach to a .NET 4 process option in Application Settings.

For instructions on reconfiguring your application for use with this profiling method, see

Forcing your application to use .NET 4 (http://www.red-

gate.com/SupportCenter/Content/ANTS_Performance_Profiler/knowledgebase/net4).

The Attach to a .NET 4 process approach profiles your application when it is already

running, rather than launching a new instance of the application. Because attaching to a

running process does not change the way the application's code executes, it is less likely

to cause a crash.

Run ANTS Performance Profiler from the Visual Studio menu

If the crash occurs in a profiling session launched directly from ANTS Performance

Profiler, try profiling using the Visual Studio ANTS Performance Profiler add-in instead.

For instructions see Using the Visual Studio add-in.

Delete corrupt third-party PDBs

The following third-party assemblies sometimes contain corrupt .pdb files, which can

cause crashes during profiling:

 Microsoft.Practices library

 AjaxControlToolkit

For instructions on finding and deleting corrupt .pdb files, see Troubleshooting PDB

problems.

Troubleshooting web application crashes

If the application you are profiling is a web application, try the following two steps.

http://www.red-gate.com/SupportCenter/Content/ANTS_Performance_Profiler/knowledgebase/net4
http://www.red-gate.com/SupportCenter/Content/ANTS_Performance_Profiler/knowledgebase/net4

© Red Gate Software Ltd 106

Profile using another web server application

Some applications that crash under profiling can be profiled successfully if run on another

type of server application:

 If you are profiling in IIS, switch to the ASP.NET built-in web development server.

 If you are profiling in the ASP.NET web development server, switch to IIS.

Note that changing environments will work only if the server application you select

supports all your application's features:

 Applications using integrated pipeline mode, impersonation, or HTTPS will not run on

the built-in web-development server.

 Applications that cannot operate in a restricted security context may not run in IIS.

Profiling results obtained in from applications running on the web development server

may also differ from performance in a production environment.

IIS: ensure you are profiling on the correct port

 If you are using IIS 6 or IIS 7, select Unused port and choose a port that is not

used by IIS.

Note that this will not work if your application's code binds to a specific port.

 If you are using IIS 5, or if you are using IIS 6 or 7 and your application binds to a

specific port, select Original port.

IIS will restart so that the profiler can attach to the port.

Getting more help

If the steps above do not prevent the profiled application from crashing, please contact

Red Gate support (https://www.red-

gate.com/supportcenter/ContactSupport?q=purchaseevaluation), including, if possible, a

log of the application crash.

https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation
https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation

© Red Gate Software Ltd 107

ANTS Performance Profiler may show no profiling results, may show no results for some

methods, or may show the error message "The profiler did not find any methods with

source code", when:

 ANTS Performance Profiler cannot find usable .pdb files for your application

 ANTS Performance Profiler cannot find any code to profile

 ANTS Performance Profiler cannot read a performance counter

This topic describes how to resolve each of these problems.

You may also receive no results, or incomplete results, if the application you are profiling

crashes. For more information, see Troubleshooting application crashes.

ANTS Performance Profiler cannot find usable .pdb files for your

application

See Troubleshooting .pdb problems.

ANTS Performance Profiler cannot find any code to profile

ANTS Performance Profiler may be unable to find your code if:

 The application you are profiling is not installed on the same computer as ANTS

Performance Profiler.

It is not possible to profile remotely using ANTS Performance Profiler. Ensure that the

profiler is installed on the computer running the application you want to profile.

 You are profiling with 'Hide insignificant methods' selected.

This setting hides any method that contributes less than 1% of your application's total

CPU time. To display all profiled methods, clear the 'Hide insignificant methods'

checkbox.

 Your application contains no managed code.

Line-level and method-level timings are not available for unmanaged code. If all your

application's code is unmanaged, it cannot be profiled.

Method-level timings for unmanaged methods can be shown if the methods are

declared with extern within your managed code.

For web applications and WCF services running in IIS:

 The application is using an unprofiled port.

If you are profiling on an unused port, configure your application to communicate on

the same port that you selected on the Application Settings dialog in ANTS

Performance Profiler. By default this is port 8013. For more information, see Profiling

ASP.NET applications running on IIS.

Troubleshooting missing results

© Red Gate Software Ltd 108

ANTS Performance Profiler cannot read a performance counter

If any performance counters are missing from profiling results, rebuild the counters and

try profiling again.

To rebuild performance counters:

 For Windows 2000, Windows XP and Windows Server 2003: see How to manually

rebuild Performance Counter Library values

(http://support.microsoft.com/kb/300956)

 For Windows Vista, Windows Server 2008 and Windows 7: see How to rebuild

performance counters

(http://blogs.technet.com/b/yongrhee/archive/2009/10/06/how-to-rebuild-

performance-counters-on-windows-vista-server2008-7-server2008r2.aspx)

Contacting Red Gate support

If you are still unable to resolve this problem, contact Red Gate support

(https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation).

Ensure that you include in the Description field:

 the version of ANTS Performance Profiler you are using

 your computer's operating system

 the steps you have already tried

 any error messages ANTS Performance Profiler has generated, including any in the log

files.

More information about locating log files for ANTS Performance Profiler can be found

here (http://www.red-

gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_lo

g_files).

http://support.microsoft.com/kb/300956
http://blogs.technet.com/b/yongrhee/archive/2009/10/06/how-to-rebuild-performance-counters-on-windows-vista-server2008-7-server2008r2.aspx
http://blogs.technet.com/b/yongrhee/archive/2009/10/06/how-to-rebuild-performance-counters-on-windows-vista-server2008-7-server2008r2.aspx
https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files

© Red Gate Software Ltd 109

If ANTS Performance Profiler cannot locate usable .pdb (debugging symbols) files for the

application you are profiling, it cannot display method source code or show line-level

timings. You may receive the message "The profiler did not find any methods with source

code."

This can indicate one or more of the following:

 No .pdb file exists for the application.

 A .pdb file exists, but ANTS Performance Profiler cannot locate it.

 A .pdb file exists, but is out of date.

 A corrupt .pdb file causes ANTS Performance Profiler to crash.

This topic explains how to resolve each of these issues.

To resolve other issues causing missing results, see Troubleshooting missing results.

No .pdb file exists for the application

The method for creating a PDB depends on the type of application you are profiling.

Note that, if the application's namespace includes multiple DLLs, ANTS Performance

Profiler will look for a PDB for each of them. Line-level profiling results and source-code

display will be available only for methods in those DLLs for which ANTS Performance

Profiler can locate the PDB.

ASP.NET web applications:

1. Close ANTS Performance Profiler.

2. Open the application's web.config file.

For instructions, see How to enable debugging for ASP.NET applications

(http://msdn.microsoft.com/en-us/library/e8z01xdh.aspx)

3. Find the compilation tag and set its debug attribute to true.

4. Restart ANTS Performance Profiler and try to profile your application again.

Note that simply rebuilding the assembly will not work unless debugging is enabled. Once

the .pdb file has been created, you can set debug to false without affecting it.

Other types of application:

See Debug settings and preparation (http://msdn.microsoft.com/en-

us/library/d0b8xh0y.aspx)

A .pdb file exists, but ANTS Performance Profiler cannot locate it

For each of an application's assemblies, ANTS Performance Profiler looks for PDBs in the

directory where the assembly's DLL is stored. (For ASP.NET web applications, this is by

Troubleshooting PDB problems

http://msdn.microsoft.com/en-us/library/e8z01xdh.aspx
http://msdn.microsoft.com/en-us/library/d0b8xh0y.aspx
http://msdn.microsoft.com/en-us/library/d0b8xh0y.aspx

© Red Gate Software Ltd 110

default the bin or app_bin folder.) If the PDB for a profiled assembly is located

somewhere else, move it into this folder to enable line-level profiling and source code

display.

Using a global PDB directory

If you are unable to move the PDBs for all your DLLs into a folder where ANTS

Performance Profiler can find them (for example, if your application uses assemblies from

the Global Assemblies Cache), you can bypass the problem by creating a global

debugging symbols (PDB) directory (http://www.red-

gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=knowledg

ebase\ANTS_Performance_Profiler\KB200806000270.htm).

A .pdb file exists, but is out of date

If the assembly has been changed since its .pdb file was generated, the PDB may be out

of date. To update it:

1. Enable debugging by following the steps under "No .pdb file exists for the application"

above.

2. Recompile your assembly.

3. Restart ANTS Performance Profiler and try to profile your application again.

Note that simply rebuilding the assembly will not work unless debugging is enabled.

A corrupt .pdb file causes ANTS Performance Profiler to crash

If ANTS Performance Profiler encounters a corrupt PDB during profiling, the profiler may

crash and fail to return results. The corrupt PDB might belong to a third-party DLL or to

the application you want to profile.

There are two ways to profile an application with a corrupt PDB:

 Delete the corrupt PDB.

This will prevent you from viewing source code referenced in the deleted PDB, but will

display line-level code for all other methods.

 On the Application Settings dialog, in the Profiling mode dropdown menu, choose

Method-level timings; all methods (faster).

This will prevent the corrupt PDB from being read, avoiding the cause of the crash,

but will also prevent you from viewing source code referenced in the deleted PDB.

Line-level timings are also unavailable in this profiling mode.

Getting help

If you are still unable to resolve this problem, please contact Red Gate support

(https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation).

Supply as much information as you can in the Description box, including:

http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=knowledgebaseANTS_Performance_ProfilerKB200806000270.htm
http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=knowledgebaseANTS_Performance_ProfilerKB200806000270.htm
http://www.red-gate.com/supportcenter/Content?p=ANTS%20Performance%20Profiler&c=knowledgebaseANTS_Performance_ProfilerKB200806000270.htm
https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation

© Red Gate Software Ltd 111

 the type of application you are trying to profile

 the version of ANTS Performance Profiler you are using

 your computer's operating system

 the steps you have already tried

 any error messages ANTS Performance Profiler has generated, including any in the log

files. To locate log files for ANTS Performance Profiler, see Log files (http://www.red-

gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_lo
g_files).

http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files

© Red Gate Software Ltd 112

There are two main problems that you may encounter while profiling SharePoint:

 ANTS Performance Profiler cannot read from the directory which SharePoint writes
data to.

 ANTS Performance Profiler cannot profile SharePoint because of security restrictions in

ASP.NET.

ANTS Performance Profiler cannot read from the directory which
SharePoint writes data to

The most likely cause of problems while profiling Sharepoint is that ANTS Performance

Profiler cannot read from the directory which SharePoint writes data to. To fix this:

1. Create a temporary directory

2. If you are not on a sensitive system, allow full read/write access to this temporary

directory to all users. If you are on a sensitive system, ensuring that the local system

account has read/write access should suffice.

3. Use Control Panel to add a new environment variable. The variable must be called

RGIISTEMP and the value is the path to the temporary directory you just created.

For more information, see Chris Allen's blog post, 'Profiling SharePoint with ANTS

Performance Profiler 5.2 (http://www.simple-talk.com/dotnet/.net-tools/profiling-

sharepoint-with-ants-performance-profiler-5.2/)' (This blog post is also valid for ANTS

Performance Profiler 6.3.)

ANTS Performance Profiler cannot profile SharePoint because of security

restrictions in ASP.NET

Security features in ASP.NET may cause problems on some systems. To fix this:

1. Obtain the required information.

2. Grant permissions.

3. Ensure that compilation with be in DEBUG configuration.

4. Copy PDBs and web part DLLs to the app_bin directory.

1. Obtain the required information

Before you start, you need to know the following details for the site collection which you

are profiling:

Troubleshooting SharePoint Profiling

http://www.simple-talk.com/dotnet/.net-tools/profiling-sharepoint-with-ants-performance-profiler-5.2/
http://www.simple-talk.com/dotnet/.net-tools/profiling-sharepoint-with-ants-performance-profiler-5.2/

© Red Gate Software Ltd 113

 the URL

 the TCP port

 the name of the primary site collection administrator

 the primary site collection administrator's password

To find the name of the primary site collection administrator:

1. Open the SharePoint Central Administration website using the Start menu item.

2. Click the Application Management tab.

3. Under the SharePoint Site Management heading, click Site Collection

Administrators.

4. Select the name of the site collection hosting your web part from the dropdown list.

5. Make a note of the account set in the Primary Site Collection Administrator box.

2. Grant permissions

The primary site collection administrator must have permission to launch an IIS worker

process. To grant this permission:

1. Open Administrative Tools then open Local Security Policy.

© Red Gate Software Ltd 114

2. Under Local Policies, click User Rights Assignment.

3. Double-click Act as part of the operating system and add the primary site

collection administrator's account.

4. In the same way, double-click Impersonate a client after authentication and add

the primary site collection administrator's account.

5. Open a command prompt and run

gpupdate /force

to enforce the new settings.

6. Open Administrative Tools and go to Computer Management.

7. Under Local Users and Groups, open Users.

8. Double-click the primary site collection administrator's account and open the Member

Of tab.

© Red Gate Software Ltd 115

9. Add the Administrators group.

The ANTS Performance Profiler 6 Service must use the primary site collection

administrator's account when it starts. To configure this:

1. Open Administrative Tools then open Services.

2. Double-click ANTS Performance Profiler 6.3 Service.

3. Click the Log On tab.

4. Select This Account and enter the primary site collection administrator's username

and password.

5. Click OK.

© Red Gate Software Ltd 116

6. If the status of ANTS Performance Profiler 6 Service is Started, right-click the service

and click Restart.

3a. Ensure that compilation will be in DEBUG configuration (IIS 7)

(Instructions for IIS 6 are below)

To set the application in DEBUG configuration in IIS 7:

1. Load IIS Manager.

2. Click the web application you want to profile.

3. Click the .NET Compilation option.

4. Under the Behavior group, set Debug to True.

Continue reading the instructions in section "4. Copy PDBs and web part DLLs to the

app_bin directory", below.

3b. Ensure that compilation will be in DEBUG configuration (IIS 6)

To profile a SharePoint collection, the ASP .NET compilation must be done in DEBUG

configuration. This will allow ANTS Performance Profiler to locate the source code for any

web parts or other extensions you have written for the site collection. DEBUG

configuration will also relax some unmanaged code restrictions that prevent profiling and

stop the site from timing out.

© Red Gate Software Ltd 117

To set DEBUG configuration, you must know the physical path to the root of the site

collection website.

To find this path:

1. Open Administrative Tools.

2. Open Internet Information Server (IIS) Manager.

3. Right-click the website containing the site collection then click Properties.

4. Open the Home Directory tab.

5. Note the path in the Local path box.

You must now locate and edit the web.config file for the site collection using an XML

editor.

1. Use Windows Explorer to navigate to the site collection root's physical path.

2. Right-click the web.config file.

3. Open the web.config file using Notepad. Search for the text debug.

© Red Gate Software Ltd 118

4. Change
<compilation batch="false" debug="false">

to
<compilation batch="false" debug="true">

and save the file.

4. Copy PDBs and web part DLLs to the app_bin directory

If you want to be able to filter out all methods except the ones run by your code when

viewing the results, you must copy the relevant files into the site's app_bin directory. To

do this:

1. Copy all PDB files and any web part DLLs used by your site to the Clipboard.

2. Use Windows Explorer to navigate to the site collection root's physical path.

3. Open the app_bin directory.

4. Paste all PDB files and any web part DLLs used by your site into this directory.

© Red Gate Software Ltd 119

Continue following the instructions in Setting up the Performance Profiler, above.

© Red Gate Software Ltd 120

When you click Start Profiling for an ASP.NET web application (IIS), profiling may not

start, and a "Cannot start IIS" error may be displayed. This indicates one or more of the

following:

 An early access build of the ANTS Performance Profiler continuous profiling tool

prevents ANTS Performance Profiler from accessing IIS.

 The logged-in user has insufficient account permissions to run the web application.

 Internet Explorer is running in protected mode.

 IIS is unable to resolve the web application's URL.

 ANTS Performance Profiler encounters a conflict with another performance profiler

installed on your computer.

This topic describes how to resolve each of these issues.

An early access build of the ANTS Performance Profiler continuous
profiling tool prevents ANTS Performance Profiler from accessing IIS

The continuous profiling tool currently runs as a separate tool from the main ANTS

Performance Profiler product. If you have installed an early access build of the ANTS

Performance Profiler continuous profiler IIS module, other profilers - including the

desktop ANTS Performance Profiler product - will be unable to profile applications running

in IIS on this computer. To re-enable other profilers with IIS, uninstall the IIS Profiler

Module:

1. From your computer's Start menu, launch the Continuous Profiling Configuration

Tool.

2. Click Uninstall.

For more information on configuring continuous profiling, see Setting up continuous

profiling.

The logged-in user has insufficient account permissions to run the web
application

ANTS Performance Profiler starts the IIS application pool with permissions inherited from

the currently logged-in user account, rather than using the IIS application settings.

Troubleshooting IIS profiling

© Red Gate Software Ltd 121

 If possible, run ANTS Performance Profiler as an administrator.

 If you are unable to run ANTS Performance Profiler as an administrator, grant the

logged-in user account permissions to access the IIS configuration system and write

to the ASP.NET temporary files. For more information on how to do this, see Assign

ASP.NET Permissions to the New Account (http://msdn.microsoft.com/en-

us/library/ms998297.aspx#paght000009_step2) (MSDN).

Manually specifying the ASP.NET account

The error may also occur when using "Manually specify ASP.NET account details". Check

that the specified account is a valid user, has administrator privileges, and has read

access to %ProgramFiles%\Red Gate\ANTS Performance Profiler 6\ProfilerCore.dll.

Internet Explorer is running in protected mode

If Protected Mode is turned on in Internet Explorer, when you click Start Profiling, a

browser session may invisibly start and quickly terminate. If this occurs, Internet

Explorer may launch with the message "Internet Explorer cannot display the webpage" or

"Could not connect to the remote server", and no profiling results are displayed.

To prevent this error:

 If possible, turn off Protected Mode in Internet Explorer before starting a profiling

session.

 If you need to use Protected Mode, add localhost to the list of trusted sites, and try to

profile your application again. For instructions on adding a site to Internet Explorer's

Trusted Sites list, see Security zones: adding or removing websites

(http://windows.microsoft.com/en-US/windows7/Security-zones-adding-or-removing-

websites) (Microsoft).

IIS cannot resolve the web application's URL

If the bindings in IIS have been changed from the default, ANTS Performance Profiler

may be unable to resolve your site's hostname. If this problem occurs, the following error

message is usually shown:

"Couldn't determine the IIS Site associated with URL 'http://< URL>:port'. Please check

that the URL is serviced by the instance of IIS running on this machine."

http://msdn.microsoft.com/en-us/library/ms998297.aspx#paght000009_step2
http://msdn.microsoft.com/en-us/library/ms998297.aspx#paght000009_step2
http://windows.microsoft.com/en-US/windows7/Security-zones-adding-or-removing-websites
http://windows.microsoft.com/en-US/windows7/Security-zones-adding-or-removing-websites

© Red Gate Software Ltd 122

In the ASP.NET web application (URL) field, enter localhost or the loopback IP address

(127.0.0.1) and try to profile your application again:

ANTS Performance Profiler encounters a conflict with another
performance profiler installed on your computer

IIS can fail to start if ANTS Performance Profiler encounters a conflict with another

performance profiler. We recommend uninstalling other profilers while profiling with ANTS

Performance Profiler.

If you are running ANTS Performance Profiler Version 5.2 and earlier:

If the error persists after uninstalling other profilers, you may need to remove

environment variables left behind by an earlier profiling session:

1. Close ANTS Performance Profiler and IIS.

2. In regedit.exe, locate the following registry key:

If you are running IIS version 6.0 or earlier:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\IISADMIN

If you are running IIS version 7.0 or later:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC

3. Expand the key and modify the Environment subkey to delete the following values:

COR_ENABLE_PROFILING=1 and COR_PROFILER={a GUID}.

Note: if the Environment subkey does not exist, please contact Red Gate support

(see below for more details).

4. Close the Registry Editor, restart ANTS Performance Profiler, and try to profile your

application again.

Contacting Red Gate support

If you are unable to resolve this problem using the information in this topic, please

contact support (https://www.red-

https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation

© Red Gate Software Ltd 123

gate.com/supportcenter/ContactSupport?q=purchaseevaluation), and supply as much

information as you can in the Description box, including:

 the versions of IIS and ANTS Performance Profiler you are using

 your computer's operating system

 the steps you have already tried

 any error messages ANTS Performance Profiler has generated, including any in the log

files. More information about locating log files for ANTS Performance Profiler can be

found here (http://www.red-

gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_lo

g_files).

https://www.red-gate.com/supportcenter/ContactSupport?q=purchaseevaluation
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files
http://www.red-gate.com/supportcenter/content/ANTS_Performance_Profiler/knowledgebase/ANTS_log_files

© Red Gate Software Ltd 124

Trademarks and registered trademarks

Red Gate is a registered trademark of Red Gate Software Ltd registered in the U.S. Patent

and Trademark Office.

.NET Reflector and SQL Compare are registered trademarks of Red Gate Software Ltd

registered in the U.S. Patent and Trademark Office.

ANTS Performance Profiler, ANTS Memory Profiler, .NET Reflector Pro, Exception Hunter,

Schema Compare for Oracle, SQL Backup, SQL Data Compare, SQL Comparison SDK,

SQL Dependency Tracker, SQL Doc, SQL Log Rescue, SQL Multi Script, SQL Packager,

SQL Prompt, SQL Refactor, SQL Response, SQL Toolbelt, and Exchange Server Archiver

are trademarks of Red Gate Software Ltd.

Microsoft, Windows, Windows 98, Windows NT, Windows 2000, Windows 2003, Windows

XP, Windows Vista, Windows 7, Visual Studio, and other Microsoft products referenced

herein are either registered trademarks or trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

InstallShield is a registered trademark and service mark of InstallShield Software

Corporation.

Copyright information

All Red Gate applications are © Red Gate Software Ltd 1999 - 2011

SQL Backup, SQL Compare, SQL Data Compare, SQL Packager, and SQL Prompt contain

software that is Copyright © 1995 - 2005 Jean-loup Gailly and Mark Adler.

SQL Doc includes software developed by Aspose (http://www.Aspose.com).

SQL Backup contains software that is Copyright © 2003 - 2008 Terence Parr. Refer to the

ACKNOWLEDGEMENTS.txt file in your SQL Backup installation directory for the full license

text.

Acknowledgements

