

SQL Packager 5.5

July 2008

Note: these pages apply to a version of
this product that is not the current released version.

For the latest support documentation, please see
http://documentation.red-gate.com

http://documentation.red-gate.com/

© Red Gate Software Ltd 1999-2013 1

Contents

Getting started..2

Worked example: Packaging a database as an .EXE ..3

Worked example: Packaging an upgrade as a C# project ... 11

Working with projects ... 19

Specifying the package contents .. 21

Previewing the SQL scripts... 27

Creating an .EXE ... 29

Creating a C# project.. 31

Setting packaging options .. 33

Running the package ... 34

Understanding the results... 38

Upgrading databases on different SQL Server versions ... 41

Upgrading the database structure and data.. 43

Troubleshooting .. 44

Common error messages .. 47

Using the command line interface ... 49

Basic command line features .. 50

Using XML to specify command line arguments .. 52

Integrating the command line with applications ... 54

Frequently asked questions for the command line .. 55

Acknowledgements ... 57

Entering extra package information ... 58

Specifying a package type.. 60

Setting data packaging options ... 61

Setting SQL Packager options .. 64

Setting schema packaging options .. 65

© Red Gate Software Ltd 2

SQL Packager enables you to package the structure and contents of a Microsoft® SQL

Server™ database, database upgrade, or any SQL script, as a .NET executable file or a

C# project.

You can use SQL Packager to package the database structure, data, or both, for

installation or deployment. SQL Packager also enables you to compress your package for

reduced storage overheads and faster deployment and distribution of databases.

If you package the database as a C# project, you can customize the package. For

example, you can edit the forms created in the project to customize the appearance of

the graphical user interface that is displayed when you run the package.

You can use SQL Packager to package SQL Server 2008, SQL Server 2005, and SQL

Server 2000 databases.

SQL Packager: step-by-step

1. Create or open a project (page 19) to package a database, database upgrade, or any

SQL script.

2. Specify the database objects and tables to package. (page 21)

3. Preview the SQL scripts. (page 27)

4. Specify the package type and details. You can create an .EXE package (page 29),

create a C# package (page 31), or choose to launch or save the package creation

script. (page 27)

5. Run the package. (page 34)

Worked examples

Learn more about SQL Packager by following one of these detailed examples:

 packaging a database as an .EXE (page 3)

 packaging an upgrade as a C# project (page 11) Worked example: Packaging a

database as an .EXE

This worked example demonstrates how to package a database as an .EXE (.NET

executable) and run the executable to create a copy of the database.

Getting started

© Red Gate Software Ltd 3

In the example, the Magic Widget Company has a SQL Server database running on a live

Web server. They have created a database of their products, which now needs to be

packaged for deployment to the sales department.

You will see how to:

1. Set up the database if you want to follow the example on your own system.

You will need access to a SQL Server to do this.

2. Specify the contents of the package.

3. Preview the SQL scripts.

4. Generate the package as an .EXE (.NET executable).

5. Run the package to create a copy of the database.

Setting up the database

The worked example packages the WidgetSales database. To create this database on

your SQL Server:

1. If it exists already, delete the database WidgetSales from your SQL Server.

2. Click here (/support/SQL_Packager/help/5.5/SP_WECreateNET.sql) to view the SQL

creation script for the database.

3. Copy the script, paste it in your SQL application, and then run it.

The database is created and populated with data.

Specifying the package contents

1. If you have not yet started SQL Packager, select it from your Start menu; if SQL

Packager is already running, click New Project.

2. On the Choose a project type page of the Packager Wizard, select Package a

database, and click Next.

The Choose database to package page of the Packager Wizard is displayed.

3. In the Server box, under Database to package, type or select the name of the SQL

Server on which you created the database.

4. Select the authentication method, and for SQL Server authentication enter the

User name and Password.

5. In the Database box, type or select WidgetSales.

Worked example: Packaging a database as an .EXE

file://red-gate.com/support/SQL_Packager/help/5.5/SP_WECreateNET.sql

© Red Gate Software Ltd 4

If WidgetSales is not displayed in the Database list, right-click in the Database box

and click Refresh, or scroll to the top of the list and click Refresh.

6. Click Next.

SQL Packager displays a message dialog box while it analyzes the database structure.

If you select the Close message box on completion check box, SQL Packager

closes this message dialog box automatically the next time that you choose the

database. For this example, leave the setting as it is.

7. Click OK to close the message box.

© Red Gate Software Ltd 5

SQL Packager displays a list of the objects in the database.

You can choose which objects to package. For more information, see Specifying the

package contents (page 21).

For this example, leave all the check boxes selected so that all of the objects are

created in the database when the package is run.

8. Click Next.

© Red Gate Software Ltd 6

SQL Packager displays a list of the tables that contain data that you can package.

You can choose the tables for which you want to package data. For this example,

leave all the check boxes selected so that you package all of the data.

9. Click Next.

SQL Packager displays a message dialog box while it generates the SQL script.

If you select the Close message box on completion check box, SQL Packager

closes this message dialog box automatically the next time that it generates the SQL

script. For this example, leave the setting as it is.

10. Click OK to close the message box.

© Red Gate Software Ltd 7

Previewing the SQL Scripts

The SQL scripts page is displayed.

To see the SQL script for creating the data, click the Data Script tab. To see details

about unexpected behavior that may occur when you run the package, click the

Warnings tab.

If required, you can save the scripts on the next page of the wizard.

When you have finished reviewing the SQL scripts, click Next.

© Red Gate Software Ltd 8

Generating the package

The Specify package type page is displayed.

In this example, we will create an .EXE. For an example of how to create a C# project,

see Packaging an upgrade as a C# project (page 11).

1. Ensure that Package as an .EXE is selected, and click Next.

The Create .EXE page is displayed.

2. Enter a name and location for your package.

© Red Gate Software Ltd 9

3. Leave the Use compression check box selected so that your package will be

compressed.

The generated files will be compressed to approximately 75% of their original size.

4. Select the Run executable now check box, and click Finish.

A message dialog box informs you that the executable is created in the location you

specified. Click OK to close it. For large databases, additional dynamic -link library

(.dll) files are also created. The Run Package dialog box is displayed for you to run

the executable immediately.

Running the package

You use the Run Package dialog box to specify details of the database that will be

created when the package is run.

Select the Server on which you want to create the database, and if required, enter the

authentication details. Note that the SQL Server version must be compatible with the

latest version database that you specified when you chose the database to package.

The Advanced options enable you to define properties for the database that will be

created, such as the database location.

Type a name for the Database and click Run. A message dialog box is displayed for you

to confirm that you want to continue. Click Yes.

When the database is created, a message dialog box confirms that the package has run

successfully. Click OK to close it.

You can use your SQL application to check that the database has been created as you

expect. If you have purchased Red Gate SQL Compare (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm

© Red Gate Software Ltd 10

8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm) you can

compare the databases' structure to confirm that they are identical; if you have

purchased SQL Data Compare (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_

Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.

htm), you can compare the data to confirm it is identical.

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm

© Red Gate Software Ltd 11

This worked example demonstrates how to package an upgrade to a database as a C#

project, and run the package.

In the example, the sales department of the Magic Widget Company has a SQL Server

database of their products. The development department have made a number of

changes to the structure and content of the product database, which now need to be

packaged for deployment to the sales department as an upgrade.

You will see how to:

1. Set up the databases if you want to follow the example on your own system.

You will need access to a SQL Server to do this.

2. Specify the contents of the package.

3. Preview the SQL scripts.

4. Generate the package as a C# project.

5. Run the package to upgrade the existing database.

You will need Microsoft® Visual Studio® .NET 2005 or later to compile the project.

Setting up the databases

The worked example upgrades the product database, WidgetSales, with a later version

of the database called WidgetDeploy. To create these databases on your SQL Server:

1. If they already exist, delete the databases WidgetSales and WidgetDeploy from

your SQL Server.

2. Click here (/support/SQL_Packager/help/5.5/SP_WEUpgradeC.sql) to view the SQL

creation script for the databases.

3. Copy the script, paste it in your SQL application, and then run it.

The databases are created and populated with data.

Specifying the package contents

1. If you have not yet started SQL Packager, select it from your Start menu; if SQL

Packager is already running, click New Project.

2. On the Choose a project type page of the Packager Wizard, select Package an

upgrade to a database, and click Next.

The Choose databases to package into an upgrade page of the Packager Wizard

is displayed.

3. In the Server box, under Latest Version Database, type or select the name of the

SQL Server on which you created the databases.

4. Select the authentication method, and for SQL Server authentication enter the

User name and Password.

5. In the Database box, type or select WidgetDeploy.

If WidgetDeploy is not displayed in the Database list, right-click in the Database box

and click Refresh or scroll to the top of the list and click Refresh.

Worked example: Packaging an upgrade as a C# project

file://red-gate.com/support/SQL_Packager/help/5.5/SP_WEUpgradeC.sql

© Red Gate Software Ltd 12

6. Under Database to upgrade, in the Server box, type or select the name of the SQL

Server.

7. Select the authentication method, and for SQL Server authentication enter the

User name and Password.

8. In the Database box, type or select WidgetSales.

If WidgetSales is not displayed in the Database list, right-click in the Database box

and click Refresh or scroll to the top of the list and click Refresh.

9. Click Next.

SQL Packager displays a message dialog box while it analyzes the database structure.

If you select the Close message box on completion check box, SQL Packager

closes this message dialog box automatically the next time that you choose the

databases. For this example, leave the setting as it is.

10. Click OK to close the message box.

© Red Gate Software Ltd 13

SQL Packager displays a list of objects whose structure differs in the databases.

You can choose which objects to package. For more information, see Specifying the

package contents (page 21).

For this example, leave all the check boxes selected so that all of the objects are

updated when the package is run.

The Action column indicates the action that will be taken on WidgetSales to make it

identical to WidgetDeploy. Note that the upgrade not only creates new objects in

WidgetSales; it also alters and drops objects from WidgetSales to make it identical to

WidgetDeploy. For example, the WidgetPriceList view will be dropped from

WidgetSales.

11. Click Next.

© Red Gate Software Ltd 14

SQL Packager displays a list of the tables that contain data that can be packaged.

You can choose the tables for which you want to package data. For more information,

see Specifying the package contents (page 21).

For this example, leave all the check boxes selected so that all the data in the tables

will be updated when the package is run.

12. Click Next.

SQL Packager displays a message dialog box while it generates the SQL script.

If you select the Close message box on completion check box, SQL Packager

closes this message dialog box automatically the next time that it generates the SQL

script. For this example, leave the setting as it is.

13. Click OK to close the message box.

© Red Gate Software Ltd 15

Previewing the SQL Scripts

The SQL scripts page is displayed.

The SQL scripts page displays the following tabs:

 Schema Script displays the SQL code to update the structure in WidgetSales so that

it is identical to WidgetDeploy

 Data Script displays the SQL code to update the data in WidgetSales so that it is

identical to WidgetDeploy

 Warnings provides details about unexpected behavior that may occur when you run

the package

In this example, SQL Packager displays a warning to inform you that it cannot use the

ALTER TABLE command to change the IDENTITY column, so the package will rebuild the

WidgetReferences table. Warnings are displayed whenever tables require rebuilding as

these may be slow operations.

If required, you can save the scripts from the next page of the Packager Wizard.

When you have finished reviewing the sc ripts, click Next.

© Red Gate Software Ltd 16

Generating the package

The Specify package type page is displayed.

In this example, we will create a C# project. For an example of how to generate a .NET

executable, see Packaging a database as an .EXE (page 2)

1. Ensure that Package as a C# project is selected, and click Next.

The Create C# Project page is displayed.

2. Enter a name and location for your package.

© Red Gate Software Ltd 17

3. Leave the Compress generated SQL resource files check box selected so that your

package will be compressed.

The generated files will be compressed to approximately 75% of their original size.

Note that compressing the resource files means that you cannot edit the resource files

or add resource files to the C# project.

4. Ensure the Open project in Visual Studio check box is selected, and click Finish.

A message dialog box informs you that the project is created in the location you

specified. Click OK to close it. Visual Studio .NET is launched with the project.

Running the package

To compile and run the project, in Visual Studio .NET 2005 or later, press F5, or on the

Debug menu, click Start. The Run Package dialog box is displayed.

You use this dialog box to specify details of the database that will be upgraded when the

package is run.

Select the Server for WidgetSales, and if required, enter the authentication details.

Click Run. A message dialog box is displayed for you to confirm that you want to

continue. Click Yes.

When WidgetSales is upgraded, a message dialog box confirms that the package has run

successfully. Click OK to close it.

You can use your SQL application to check that the database has been changed as you

expect. If you have purchased Red Gate SQL Compare (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/

8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm) you can

compare the databases' structure to confirm that they are identical; if you have

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Compare&c=SQL_Compare/help/8.0/SC_Getting_Started.htm&toc=SQL_Compare/help/8.0/toc.htm

© Red Gate Software Ltd 18

purchased SQL Data Compare (http://www.red-

gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_

Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.

htm), you can compare the data to confirm it is identical.

http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm
http://www.red-gate.com/supportcenter/Content.aspx?p=SQL%20Data%20Compare&c=SQL_Data_Compare/help/7.0/SDC_GettingStarted.htm&toc=SQL_Data_Compare/help/7.0/toc.htm

© Red Gate Software Ltd 19

Whenever you create a database package, you set up a project. A project contains:

 the information required to connect to the database you want to package

 information about which objects and data you want to include in the package

 the package details such as name, location, type, and compression

 optional deployment notes

 optional details about the database that will be created, such as the default name and
size

You can create a new project each time you create a package. Alternatively, if you will be

using the same settings repeatedly, you can save the current project to a file. You can

then open it at a later date to make it the current project. You can also edit the current

project if required.

You are recommended to run the project using the default packaging options (page 33)

and review the results before you change any options. If you want to change your

packaging options before you run the next project, if necessary click Cancel on the

Packager Wizard, and set the options (page 33) before you proceed.

Note that packaging options are not saved as part of the project.

Creating a new project

To create a new project:

1. If the Packager Wizard is not already displayed, click New Project. The Packager

Wizard opens.

If you have unsaved changes in the current project, you are prompted to save it.

2. In the Packager Wizard, choose a project type.

3. If you are not packaging an existing SQL script, specify the package contents (page

21).

4. Review any generated SQL scripts (page 27) for the object and data creation.

5. Create an .EXE (.NET executable) (page 29) or a C# project (page 31).

SQL Packager packages the database. Alternatively, you can launch the package

creation script in your default SQL editor, or save the script.

You can then save the project if required.

Saving the current project

When you have packaged a database, you can save a new project so that you can re-use

the settings at a later date, or you can save an existing project to a new name. Projects

are saved with the extension .sqlpkg

 On the File menu, click Save Project As.

A standard Windows® Save As dialog box is displayed.

If you have edited the current project, an asterisk (*) is shown in the title bar; to save

the edited project to the same name:

Working with projects

© Red Gate Software Ltd 20

 On the File menu, click Save Project; alternatively, click

Editing the current project

You can edit the current project and package the database again.

1. Click Edit Project.

2. In the Packager Wizard, change the package specification (page 21) as required.

3. Review the generated SQL scripts (page 27) for the object and data creation.

4. Generate an .EXE (page 29) or a C# project (page 31).

SQL Packager packages the database. An asterisk (*) is displayed in the title bar to

indicate that the project has been edited.

Opening an existing project

1. If the Packager Wizard is displayed, click Cancel to close it.

2. Click Open Project.

If you have unsaved changes in the current project, you are prompted to save it.

3. In the Open dialog box, choose the project and click Open.

The Packager Wizard is displayed with the project's settings.

To open a recently-used project, on the File menu, click the name of the project.

© Red Gate Software Ltd 21

Choosing a project type > Specifying contents > Previewing scripts (page 27) > Specifying a package type
(page 60) > Running (page 34)

Whenever you package a database, SQL Packager requires information to connect to the

database you want to package, and information about the database objects and data you

want to include in that package. You enter this information using the Packager Wizard.

The information you enter in the Packager Wizard is saved in the current project. For

more information about projects, see Working with projects (page 19).

Choosing the databases

1. If you have chosen to Package a database on the Choose a project type page, the

Choose database to package page is displayed:

Specifying the package contents

© Red Gate Software Ltd 22

Alternatively, if you have chosen Package an upgrade to a database, the Choose

databases to package into an upgrade page is displayed:

2. In the relevant Server box, type or select the name of the SQL Server.

If you experience problems selecting a SQL Server that is not running on the LAN, for

example if you are accessing the SQL Server via an internet connection, you may

need to create an alias to the SQL Server using TCP/IP (refer to your SQL Server

documentation for details). You can then type the alias name in the Server box to

connect to the remote SQL Server.

To refresh the Server list, right-click the box and click Refresh, or scroll to the top of

the list and click Refresh.

3. Select the authentication method, and for SQL Server authentication enter the

User name and Password.

4. In the Database box, type or select the database that you want to package.

To refresh the Database list, right-click in the box and click Refresh, or scroll to the

top of the list and click Refresh.

5. If you are packaging an upgrade, in Database to upgrade enter the SQL Server and

database details.

6. Click Next.

SQL Packager displays a message dialog box while it analyzes the database structure.

If you select the Close message box on completion check box, SQL Packager

closes this message dialog box automatically the next time that you choose the

databases.

7. If necessary, click OK to close the message box.

Choosing the database objects to package

If you are creating a package for a new database, SQL Packager lists the objects in the

database that you can select for packaging.

© Red Gate Software Ltd 23

If you are creating a package for upgrading an existing database, SQL Packager

compares the previous version database with the latest version database to identify the

changes to be made to the database structure to make the databases identical. SQL

Packager lists the objects whose structure differs.

You select the objects to package by selecting or clearing the appropriate check boxes in

the Package column. By default, the first time you run a project all objects are selected

for packaging. To select all objects, click ; to clear all of the check boxes, click

You may see the following types of object:

 Tables Rules

 Views Defaults

 Stored Procedures User Defined Types

 Users Functions

 Roles Full Text Catalogs

For SQL Server 2008 or SQL Server 2005, the following object types may also be shown:

 Assemblies Queues

 Asymmetric Keys Routes

 Certificates Schemas

 Contracts Services

 DDL Triggers Service Bindings

 Event Notifications Symmetric Keys

 Message Types Synonyms

© Red Gate Software Ltd 24

 Partition Functions XML Schema Collections

 Partition Schemes Full Text Stoplist

(SQL Server 2008 only)

Note that SQL Server 2008 and SQL Server 2005 severely restrict access to certificates,

symmetric keys, and asymmetric keys. Consequently, SQL Packager can package only

the permissions of certificates and asymmetric keys; symmetric keys cannot be

packaged. To ignore all certificates, symmetric keys, and asymmetric keys, select the

Ignore certificates, symmetric and asymmetric keys schema packaging option.

If you are upgrading a database, note that:

 Objects that are the same but have different owners are treated as different objects.

For example, if a stored procedure exists in both databases and is identical except for
its owner, it is considered to be a completely different object.

 For SQL Server 2000, differences in database-level permissions are not detected by

SQL Packager. For example, if you have used SQL Server Enterprise Manager to set

up permissions for your database, such as GRANT CONNECT or GRANT BACKUP, those

permissions are not considered; however, permissions on objects are detected. If you

want to include database-level permissions in your database package, you are
recommended to use roles.

For SQL Server 2008 and SQL Server 2005 differences in database-level permissions

are detected.

 If the database contains an encrypted user-defined function, stored procedure,

trigger, or view and you have system administrator permissions, SQL Packager

decrypts the object and you can view its internal SQL in the schema packaging script

(page 27). If you do not have system administrator privileges, the encrypted object
cannot be displayed or upgraded.

SQL Packager cannot decrypt views, stored procedures, functions, DML triggers, and

DDL triggers that are encrypted in a SQL Server 2008 or SQL Server 2005 database.

Therefore, SQL Packager cannot compare the objects; if an encrypted object exists in

both databases, SQL Packager assumes that they are different, but will not be able to

upgrade them.

 Stored procedures that are for replication are not compared or displayed.

 SQL Packager does not compare extended stored procedures.

For each object, the Action column indicates the action that will be taken on the object.

If you are packaging a database to create a new one, the action will be Create for all

objects. However, for an upgrade, note that the package does not only add new objects

to the upgraded database; it may also Alter or Drop objects to make the databases

identical.

If you are editing an existing project (page 19) and the structure of the database has

changed since you previously packaged it, you may need to click to update the page

with the new structure.

When you have selected the objects that you want to package, click Next.

Choosing the data to package

SQL Packager lists the tables in the database for you to select for data packaging.

© Red Gate Software Ltd 25

If you are creating a package for upgrading an existing database, you can select tables

for data packaging only if they have:

 similar names

You can set SQL Packager so that it ignores the case of object names, and spaces or

underscores in object names by using the data packaging options.

 the same owner (case-sensitive)

 similar structures

 a primary key, unique index, or unique constraint that matches in both databases

SQL Packager uses the key, index, or constraint to determine which records

correspond with each other. If more than one matching primary key, unique index, or

unique constraint exists for a table, SQL Packager selects the most applicable (for

example, a primary key is used in preference to a unique index).

You can also select a table for data packaging if it does not exist in the database you are

upgrading, and you have chosen to package the table's structure in the previous page of

the wizard.

You select the tables for data packaging by selecting or clearing the appropriate check

boxes in the Package column. If you are creating a package for a new database, the

package will insert data into the tables you have selected. However, for an upgrade, the

package not only inserts data into tables, it may also update or delete rows to make the

databases identical.

By default, the first time you run a project, all available tables are selected. To select all

objects, click ; to clear all of the check boxes, click

If you are editing an existing project (page 19) and the databases' data has changed

since you previously packaged it, you may need to click to update the page.

© Red Gate Software Ltd 26

When you have selected the tables for data packaging, click Next. SQL Packager displays

a message dialog box while it generates the SQL script.

If you select the Close message box on completion check box, SQL Packager closes

this message dialog box automatically the next time that it generates the SQL script.

If necessary, click OK to close the message box. The SQL scripts page of the Packager

Wizard is displayed; for details, see Previewing the SQL scripts (page 27).

© Red Gate Software Ltd 27

Choosing a project type > Specifying contents (page 21) > Previewing scripts > Specifying a package type
(page 60) > Running (page 34)

The Packager Wizard displays the SQL scripts for creating or modifying the database

structure and data.

The SQL scripts page displays the following tabs:

Previewing the SQL scripts

© Red Gate Software Ltd 28

 Schema Script shows the SQL script to create or modify the database structure.

 Data Script shows the SQL script to create or modify the data.

 Warnings displays details about unexpected behavior that may occur when you run

the package, for example:

You can:

 Search a SQL script:

Click the Schema Script or Data Script tab, right-click the SQL code, and click Find;

a standard Windows® Find dialog box is displayed.

 Copy the SQL scripts, summary details, or warning information for use in another

application:

Select the required text, right-click, and then click Copy.

Alternatively, right-click the text, click Select All, then right-click, and click Copy.

 Save the scripts or launch them in a SQL editor on the next page of the Packager

Wizard.

When you have reviewed the SQL scripts and any warnings, click Next to specify the

package type, or choose to save or launch the scripts:

 To create an .EXE (.NET executable), see Generating an .EXE (page 29).

 To create a C# project, see Generating a C# project (page 31).

If you will want to customize the package, you are recommended to create a C#

project.

© Red Gate Software Ltd 29

Choosing a project type > Specifying contents (page 21) > Previewing scripts (page 27) > Specifying a
package type > Running (page 34)

When you have chosen the database, objects, and data, that you want to package and

previewed the SQL scripts, you can define the parameters for the .EXE.

To create an .EXE:

1. On the Specify package type page of the Packager Wizard, select Package as an

.EXE.

Creating an .EXE

© Red Gate Software Ltd 30

2. Click Next.

3. On the Create .EXE page, in the Name box, type a name for the package.

If you create a package with a file name that already exists, SQL Packager

automatically assigns a different file name for the package. For example, if

SQLPackage exists, the default name for the new package is SQLPackage1. You can

turn off this feature by using the packaging options.

4. In the Location box, type or select the path for the package, or c lick Browse to

choose the folder or create a new folder.

You can change the default location by using the packaging options.

5. If you want to add information to be seen when the package is run, or if you are

creating a package for a new database and you want to specify the database

properties, click Extra Package Info (page 58) and enter the details as required.

6. To compress the generated files, select the Use compression check box.

The package is usually compressed to approximately 75% of its original size.

7. To run the executable immediately, select the Run executable now check box; to

create the executable without running it, clear the Run executable now check box.

8. Click Finish.

A message dialog box is displayed to confirm that the executable has been created at

the location you specified.

9. Click OK to close the message dialog box.

If you chose to run it immediately, SQL Packager launches the Run Package dialog

box. For more information, see Running the package (page 34).

Note that for large databases, additional dynamic -link library (.dll) files are also created.

© Red Gate Software Ltd 31

Choosing a project type > Specifying contents (page 21) > Previewing scripts (page 27) > Specifying a
package type > Running (page 34)

When you have chosen the database, objects, and data that you want to package and

previewed the SQL scripts, you can define the parameters for the C# project.

You should create a C# project if you want to customize the package. For example, you

can edit the forms created in the project to customize the appearance of the graphical

user interface that is displayed when you run the package (page 34).

To create a C# project:

1. On the Specify package type page of the Packager Wizard, select Package as a C#

project.

Creating a C# project

© Red Gate Software Ltd 32

2. Click Next.

3. On the Create C# Project page, in the Name box, type a name for the project.

If you create a package with a file name that already exists, SQL Packager

automatically assigns a different file name for the package. For example, if

SQLPackage exists, the default name for the new package is SQLPackage1. You can

turn off this feature by using the packaging options.

4. In the Location box, type or select the path for the project, or click Browse to

choose the folder or create a new folder.

You can change the default location by using the packaging options.

5. If you want to add information to be seen when the package is run, or if you are

creating a package for a new database and you want to specify the database

properties, click Extra package info (page 58) and enter the details as required.

6. To compress the package, select Compress generated SQL resource files.

The package is usually compressed to approximately 75% of its original size.

Note that if you compress the package, you will not be able to add resource files to

the project or edit the existing resource files.

7. To open the project in Microsoft® Visual Studio® immediately, select the Open project

in Visual Studio check box; to create the project without opening it, clear the check

box.

8. Click Finish.

A message dialog box is displayed to confirm that the project has been created at the

location you specified.

9. Click OK to close the message dialog box.

If you chose to open it immediately, SQL Packager launches the project in Visual

Studio. For more information, see Running the package (page 34).

© Red Gate Software Ltd 33

The packaging options are a set of advanced features that enable you to modify the

behavior of SQL Packager. For example, you can set SQL Packager so that it ignores

certain features, such as triggers.

To display the SQL Packager Options dialog box:

 On the Packager menu, click Options.

The options are divided into the following tabs:

 Schema options apply to the structure of the database

 Data options apply to the data for the selected objects

 Packager options apply to the .EXE or C# project

The packaging options are saved for each user. Therefore, if you change the options they

will apply to all projects (page 19) run by the current user.

To reset all the options to their default values, click Restore All Defaults.

Setting packaging options

© Red Gate Software Ltd 34

Choosing a project type > Specifying contents (page 21) > Previewing scripts (page 27) > Specifying a package
type (page 60) > Running

When SQL Packager has generated the package, you can run it using a graphical user

interface or from the command line (page 60).

Note that the graphical user interface may differ from the interface described in this topic

if it has been customized.

Using the graphical user interface to create a database

To create a new database:

1. Display the Run Package dialog box:

 for an .EXE package, run the executable in the usual way

For example, double-click the .exe file in Microsoft® Windows® Explorer.

 for a C# project, open the project in Visual Studio®, press F5 to run it, or on the

Debug menu, click Start

Alternatively, compile the project and run the executable in the usual way.

The Run Package dialog box is displayed.

2. To view any notes that were added to the package when it was generated, or to see a

summary of the SQL scripts and any warnings, click More Info.

The More Information dialog box is displayed with the information. Click OK to close

it.

Running the package

© Red Gate Software Ltd 35

3. In the Server box, type or select the name of the SQL Server on which you want to

create the database.

If you experience problems selecting a SQL Server that is not running on the LAN, for

example if you are accessing the SQL Server via an internet connection, you may

need to create an alias to the SQL Server using TCP/IP (refer to your SQL Server

documentation for details). You can then type the alias name in the Server box to

connect to the remote SQL Server.

4. Select the authentication method, and for SQL Server authentication enter the

User name and Password.

5. Do one of the following:

 To create a new database, click Make a database (the default) and type a name

for the database in the Database box.

If you want to change the default database properties, click Advanced and enter the

details as required. For more information about database properties, see Entering

extra package information (page 58). Note that if you want your database to use

filegroups or full-text processing you should create the database manually, and use

the Upgrade an existing database option.

 To populate an empty database that you have already created, click Upgrade an

existing database and in the Database box, type or select the name of the

database.

6. Click Run.

A message dialog box is displayed for you to confirm that you want to continue. A

second message dialog box confirms that the package has run successfully.

Using the graphical user interface to upgrade a database

To upgrade an existing database:

1. Display the Run Package dialog box:

 for an .EXE package, run the executable in the usual way

For example, double-click the .exe file in Windows Explorer.

 for a C# project, open the project in Visual Studio .NET, press F5 to run it, or on

the Debug menu, click Start

Alternatively, compile the project and run the executable in the usual way.

© Red Gate Software Ltd 36

The Run Package dialog box is displayed.

2. To view any notes that were added to the package when it was generated, or to see a

summary of the SQL scripts and any warnings, click More Info.

The More Information dialog box is displayed with the information. Click OK to close

it.

3. In the Server box, type or select the name of the SQL Server for the database you

are upgrading.

If you experience problems selecting a SQL Server that is not running on the LAN, for

example if you are accessing the SQL Server via an internet connection, you may

need to create an alias to the SQL Server using TCP/IP (refer to your SQL Server

documentation for details). You can then type the alias name in the Server box to

connect to the remote SQL Server.

4. Select the authentication method, and for SQL Server authentication enter the

User name and Password.

5. In the Database box, type or select the name of the database that you want to

upgrade.

6. Click Run.

A message dialog box is displayed for you to confirm that you want to continue. A

second message dialog box confirms that the package has run successfully.

Using the command line

When you run the package from the command line, the following options are available:

/server:<server>

The name of the SQL Server. The default is (local).

/server:<server>\<instance>

The name of the SQL Server and instance. The default is (local).

/database:<database>

© Red Gate Software Ltd 37

The name of the database that you want to create or upgrade.

/username:<username>

The user name for the database for SQL Server authentication.

/password:<password>

The password for the database for SQL Server authentication.

/quiet

Runs the package without displaying the graphical user interface.

/makedatabase

Creates the database on the specified SQL Server.

For example, to create a database called MyDatabase on SQL Server MyServer using

SQL Server authentication, navigate to the folder that contains the package, and at the

command prompt, type:

MyPackage.exe /server:MyServer /database:MyDatabase

 /username:MyUserName /password:MyPassword

SQL Packager sets two return codes that you can use in batch files or scripts to determine

whether the package ran successfully:

 0 is returned if the package ran successfully

 -1 is returned if an error occurred

If you have specified /quiet to run without the graphical user interface, the return code

is stored in the ERRORLEVEL environment variable, and the error message is written to

the console.

© Red Gate Software Ltd 38

This topic provides information that may help you to understand the results when you use

SQL Packager to create or upgrade a database. You may also wish to refer to

Troubleshooting (page 44).

Database diagrams

SQL Packager does not package or upgrade database diagrams.

System tables

SQL Packager does not package or upgrade system tables.

Encrypted database objects

If you are packaging a SQL Server 2000 database that contains an encrypted user-

defined function, stored procedure, trigger, or view and you have system administrator

permissions, SQL Packager decrypts the object and you can view its internal SQL in the

schema packaging script (page 27). If you do not have system administrator privileges,

you cannot package the encrypted object.

SQL Packager cannot decrypt views, stored procedures, functions, and DML triggers that

are encrypted on a SQL Server 2008 or SQL Server 2005 database. Therefore, SQL

Packager cannot display the SQL code for the encrypted objects, and cannot package

them.

Column order

If you are upgrading a database, column order is not forced unless you select the Force

table column order to be identical schema packaging option.

For example, the latest version database has a table that contains ColA and ColB, in that

order, and the previous version database has the same table but with ColB then ColA. If

Force table column order to be identical is not selected, SQL Packager considers the

tables to be identical. If the option is selected, SQL Packager considers the tables to be

different and upgrades the table.

Renamed columns

If you are upgrading a database, SQL Packager attempts to recognize renamed columns

by the similarity of the names and the data types of the columns. When a renamed

column is recognized as such, SQL Packager renames the column as appropriate.

However, if the names and data types are very different, SQL Packager may consider the

renamed column to be a completely different column. In this case, if ColA in the latest

version database is renamed to ColB in the previous version database, when SQL

Packager creates the upgrade script, ColA will be created in the previous version

database as a new column and ColB will be deleted. To avoid data loss, before you run

the package you must take care to preserve any data in the two columns, and merge

them following the upgrade.

Understanding the results

© Red Gate Software Ltd 39

Updated views

Following an upgrade, if a view has not been updated by the package and it contains a

SELECT * statement, you must refresh it using sp_refreshview, to reflect any changes

that have been made to the underlying objects on which the view depends. Refer to your

SQL Server documentation for more information.

Note that it is not best practice to use SELECT * statements in views; you are

recommended to specify an explicit column list.

Replication

If objects that are used in replication are upgraded, errors may occur. For example, SQL

Packager cannot drop a table if it is used for replication.

Users

In Microsoft® Windows®, users are a composite of the domain name or computer name

and the user name, for example Computer1\WindowsUser1. If you are upgrading a

database, SQL Packager references only the user name, so that Computer1\User1 and

Computer2\User1 would be considered as the same. Therefore, if you intend to upgrade

users, ensure that their user names are different.

SQL Packager upgrades changes to users, such as changes to permissions. However, SQL

Packager does not upgrade modifications to user passwords.

New users are created with the password: p@ssw0rd.

Filegroups

SQL Packager supports the upgrade of databases that use multiple filegroups. However,

you must ensure that the filegroups have been created on the target server prior to

upgrade. If the filegroups do not exist, the upgrade will fail.

CLR assemblies

When a CLR assembly is to be updated, if possible SQL Packager achieves this by using

ALTER ASSEMBLY.

If SQL Packager determines that it would not be possible to use ALTER ASSEMBLY, the

relevant table is rebuilt twice:

 in the first rebuild, the CLR type columns are converted to nvarchar

The CLR type columns are dropped and recreated.

 in the second rebuild, the nvarchar data is converted to the final CLR type

Data is preserved. Note that the ToString representation of the CLR user-defined type

must be the same for both the old and the new assembly, otherwise the upgrade may

fail, or the data may be corrupted.

To force SQL Packager to use the double-table rebuild method, select the schema

packaging option Do not use ALTER ASSEMBLY to change CLR types.

© Red Gate Software Ltd 40

Partition schemes and functions

In SQL Server 2008 and SQL Server 2005, partition schemes can be specified for tables

so that the table is stored in several filegroups. By default, SQL Packager ignores

filegroups. However, if you select the schema packaging option Consider next filegroups

in partition schemes, SQL Packager upgrades the files. Note that for updates to partition

schemes, a large amount of disk space may be required on the defined filegroups

because partition ranges must be merged and split.

In certain cases, for example when a partition function changes from left range to right

range, it is necessary to drop and recreate partition functions and partition schemes. In

these cases, the table is rebuilt twice:

 in the first table rebuild, the content is saved to a temporary filegroup

 in the second table rebuild, the table is migrated from the temporary filegroup to a
new partition scheme

Data is preserved. Note that if a CLR assembly upgrade also requires a table to be rebuilt

twice, the CLR assembly and the partition scheme are upgraded at the same time.

Certificates, symmetric keys, and asymmetric keys

SQL Server 2005 severely restricts access to certificates, symmetric keys, and

asymmetric keys. Consequently, SQL Packager can package only the permissions of

certificates and asymmetric keys; symmetric keys cannot be packaged. To ignore all

certificates, symmetric keys, and asymmetric keys, select the Ignore certificates,

symmetric and asymmetric keys schema packaging option.

Extended properties on databases

Extended properties on databases are always packaged if they differ. If you do not want

them to be packaged, select the Ignore extended properties schema packaging option.

© Red Gate Software Ltd 41

This topic provides additional information for you if you are upgrading a database that is

on a different version of Microsoft® SQL Server™ from the source database.

SQL Server 2008, SQL Server 2005, and SQL Server 2000

You can upgrade to a SQL Server 2008 database from a SQL Server 2005 or SQL Server

2000 database. Upgrading from SQL Server 2005 requires no additional actions.

Upgrading from SQL Server 2000 may require changes to the packaging options.

For upgrading the database structure:

If you are upgrading to a SQL Server 2008 or SQL Server 2005 database from a SQL

Server 2000 database, you must not change the default schema packaging options (page

33).

However, if your database is on a SQL Server with case-sensitive sort order, you must

select Treat items as case sensitive in the schema packaging options.

If you are moving changes to a SQL Server 2000 database from a SQL Server 2005

database, note the following:

 SQL Packager may be unable to upgrade all objects. Warnings (page 27) will be

displayed where possible.

 SQL Packager cannot decrypt views, stored procedures, functions, DML triggers, and

DDL triggers that are encrypted in a SQL Server 2008 or SQL Server 2005 database.

Therefore, you cannot upgrade an object in a SQL Server 2000 database from an

encrypted object in a SQL Server 2008 or SQL Server 2005 database.

When you create a default value or constraint in SQL Server 2008 or SQL Server 2005,

the definitions of the default value or constraint are parsed and the parsed version is

stored. The syntax of the SQL Server 2008 or SQL Server 2005 parsed version is not the

same as the parsed version in SQL Server 2000. For example, in SQL Server 2005, (1) is

parsed to ((1)). If these are the only differences, SQL Packager considers the objects to

be identical.

For upgrading the data:

 You can upgrade CLR data in a SQL Server 2008 or SQL Server 2005 database with

values from a text or string data type in a SQL Server 2000 database. Ensure that
the Transport CLR data types as binary data packaging option is not selected.

SQL Packager considers the collation order for string data. Therefore, if the ordering is

not the same as the CLR order, differences are reported.

 You can upgrade XML data in a SQL Server 2008 or SQL Server 2005 database with

values from a text or string data type in a SQL Server 2000 database. SQL Packager

will attempt to preserve white space. SQL Packager supports DTD (Document Type
Definition), except for default attributes and entities.

Note that some data, such as XML encoding and DTD, cannot be stored in the SQL

Server 2008 or SQL Server 2005 representation. Therefore, if you convert data from a

string data type to an XML data type, and then you convert back to a string data type,

Upgrading databases on different SQL Server versions

© Red Gate Software Ltd 42

this information will be lost. SQL Packager considers the collation order for string

data. Therefore, if the ordering is not the same as the XML order, differences are

reported.

SQL Server 2008 and SQL Server 2005 compatibility level 80 databases

If a SQL Server 2008 or SQL Server 2005 database has its compatibility level set to 80, it

conforms to strict rules for views, stored procedures, functions, and DML triggers.

Therefore, upgrades may fail.

© Red Gate Software Ltd 43

When you use SQL Packager to upgrade the data in a database, you can select data only

for those tables whose structure is identical.

If both the schema and the data has been updated for a particular table, and the schema

changes include new columns that do not allow null values, you will have to run two

packages; the first package to update the schema, and the second to update the data.

For example, the previous version of the database is called DatabaseOld, and the latest

is called DatabaseNew. To upgrade DatabaseOld:

1. Create a package to upgrade only the schema of DatabaseOld:

a. On the Choose databases to package into an upgrade page of

the Packager Wizard, select DatabaseOld as the database to

upgrade, and DatabaseNew as the latest version.

b. On the Specify the database objects whose schema will be

packaged page, select all the objects to package their schema.

c. On the Specify the tables whose data will be packaged page,

clear the selection for all of the tables so that no data is packaged.

d. Generate the package (for example Package1).

2. Run Package1 on DatabaseOld.

DatabaseOld now contains the upgraded schema, but still has the old data.

3. Create a package to upgrade the data in DatabaseOld with the data in

DatabaseNew:

a. On the Choose databases to package into an upgrade page of

the Packager Wizard, select DatabaseOld as the database to

upgrade, and DatabaseNew as the latest version.

b. On the Specify the database objects whose schema will be

packaged page, no objects will be available for schema packaging

because they are now identical.

c. On the Specify the tables whose data will be packaged page,

select all of the tables so that all data is packaged.

d. Generate the package (Package2).

4. Run Package2 on DatabaseOld to complete the upgrade.

If you need to upgrade a number of databases, you should deploy both packages and run

Package 1 followed by Package 2.

Upgrading the database structure and data

© Red Gate Software Ltd 44

This topic provides information that may help you if you are having difficulties. You may

also wish to refer to Understanding the results (page 38).

SQL Packager sometimes creates DLL files with the executable

SQL Packager creates a dynamic-link library (DLL) file in addition to the executable when

the package exceeds 100MB. For each additional 100MB, another DLL file is created. You

must distribute the executable and all the DLL files to run the package.

Insufficient disk space

SQL Packager may be unable to create or upgrade databases if there is insufficient disk

space.

 SQL Packager uses temporary files when it analyzes the databases to create the

package. To successfully create a package, these temporary files require available disk

space at least four times the size of the database you are packaging.

You can decrease the size of the temporary files by selecting the Use checksum

comparison data packaging option.

The location of the temporary files is defined by the RGTEMP environment variable, or

the TMP variable if RGTEMP does not exist (see your Windows® documentation for

information about environment variables). Note that changing the TMP variable will affect

other programs that use the variable.

Missing tables in Packager Wizard

If you are creating a package to upgrade a database, you can select tables to package

their data only if they have:

 similar names

You can set SQL Packager so that it ignores the case of object names, and spaces or

underscores in object names by using the data packaging options.

 the same owner (case-sensitive)

 similar schema

 a matching primary key, unique index, or unique constraint that has the same name

in both databases

If the tables are very different, for example if primary keys or column data types are

different, SQL Packager cannot upgrade the data. Red Gate Software Ltd offers SQL

Compare (http://www.red-gate.com/products/SQL_Compare/index.htm), which will

synchronize the schema of two databases. You can then use SQL Packager to package an

upgrade to the data.

Alternatively, you could use SQL Packager to upgrade the schema, then generate a

second package to upgrade the data. For details, see Upgrading the database structure

and data (page 43).

Troubleshooting

http://www.red-gate.com/products/SQL_Compare/index.htm

© Red Gate Software Ltd 45

In addition, if the structure of the databases that you have selected has changed while

you are working on a project, those changes are not automatically shown in the Choose

the tables whose data will be packaged page of the Packager Wizard. To refresh the

page, click ; you can then select the tables. For more information, see Specifying the

package contents (page 21).

Identical CLR data is flagged as different

SQL Packager considers the collation order for CLR and XML data. Therefore, if the

ordering is not identical, differences are reported.

Identity columns created or upgraded even though they are excluded

If you clear the data packaging option Include identity columns, but an identity

column is the key used to match records, the identity column is included in the package.

Data has not been upgraded

This may occur if:

 there are triggers defined on the tables

If you have a trigger defined on a table that inserts data into another table on

INSERT, DELETE, or UPDATE, the data in the tables will change as the upgrade is run,

which will cause unpredictable results. To avoid this, select the Disable DML

triggers data packaging option before you generate the package.

 primary keys are defined on columns with differing collation order

If you upgrade tables that have primary keys defined on columns that have different

collation order, SQL Packager may produce unpredictable results.

 columns contain timestamp data

SQL Packager cannot upgrade data in timestamp columns.

tables do not have identical schema

 If the structure of the tables you are upgrading is not identical, SQL Packager may

produce unpredictable results.

CLR data has not been upgraded

Data for CLR types can be stored as string or binary values. When CLR data is compared,

SQL Packager always compares the binary representations. However, by default, when

CLR data is upgraded, SQL Packager updates the string representations, because binary

formats are not always compatible.

If you know that the binary formats are compatible, you can select the Transport CLR

data types as binary data packaging option to force SQL Packager to update the binary

representations.

Primary keys, indexes, or unique constraints are not dropped

If you select the data packaging option Drop primary keys, indexes, and unique

constraints, note that primary keys, indexes or unique constraints that are select ed as

comparison keys are not dropped.

© Red Gate Software Ltd 46

Rollback on script cancellation or failure

If a script fails, or if it is cancelled, in most circumstances changes are rolled back. SQL

Packager uses transactions to do this. However, there are some circumstances in which

this is not possible:

 if full-text information must be altered

For example, within a transaction, catalogs cannot be dropped, and indexing cannot

be added to a column.

 if users and roles need to be created, altered, or deleted

For example, within a transaction, a user cannot be created, or added to a role.

In these cases, SQL Packager rolls back all the changes that it can. Your database will be

in an undetermined state.

Note that if the data packaging script fails, only the data changes are rolled bac k; the

changes made by the schema packaging script are not rolled back.

If you have selected the schema packaging option Do not include plumbing for

transactional synchronization scripts to remove transactions from the schema

packaging script, or cleared the data packaging option Use transactions in SQL scripts

to remove transactions from the data packaging script, no changes are rolled back when

the script is cancelled or fails. This may be useful if you want to run a script up to the

point of failure, for example for debugging.

SQL Packager always warns you if it is unable to roll back changes.

© Red Gate Software Ltd 47

Some of the more common error messages are explained below.

User already exists in database

In Microsoft® Windows®, users are a composite of the domain name or computer name,

and the user name, for example Computer1\WindowsUser1. SQL Packager references

both parts of the name. However, SQL Server references only the user name, so that

Computer1\User1 and Computer2\User1 would be considered as the same. Therefore, if

SQL Packager attempts to create a user for which the computer name is different but the

user name is the same, SQL Server returns an error.

To avoid this error, ensure that the user names are different for users that you want to

upgrade.

SQL Server doesn't exist or access is denied

SQL Packager cannot connect to the SQL Server. Try the following to rectify the problem:

1. Verify that the SQL Server is online and that the SQL Server name is listed in your

LAN by pinging the address.

For example, open a command prompt and run the following command:

ping <ServerName>

where ServerName is the name of your SQL Server.

2. If the SQL Server is online, verify that you are connecting to the correct port.

If your SQL Server is not running on the default port (1433), type the following in

Server:

<ServerName>,<Port>

where ServerName is the name of your SQL Server and Port is the number of the port

on which your SQL Server is running.

Common error messages

© Red Gate Software Ltd 48

For example:

3. If you are sure that you are connecting to the correct port, force SQL Packager to use

the TCP network protocol when it makes the connection, by typing the following:

TCP:<ServerName>

For example:

A duplicate object name has been found

SQL Packager displays this message when you connect to a database on a SQL Server

that uses case-sensitive sort order and you have not selected the Treat items as case

sensitive schema packaging option; you must select this schema packaging option.

© Red Gate Software Ltd 49

The command line interface provides access to the functionality provided by SQL

Packager. For example, using the command line interface you can:

 automate the comparison, synchronization, and packaging of both database
structures and data

 perform scheduled comparisons and synchronizations

 synchronize multiple databases

 upgrade customer databases without manual intervention

You invoke the command line either from a script, such as a batch script or VBScript, or

by using the facilities provided by compiled languages such as C++ and C#.

This online Help provides a description of basic command line features (page 50) and

examples (page 53) illustrating how you can use the command line interface. To display

full help on all of the switches that are available for the command line, at the command

prompt enter:

sqlpackager /help /verbose

where /help displays the help message and can be used in conjunction with verbose for

more detailed information. To output the help in HTML format, use the /html switch, for

example:

sqlpackager /help /verbose /html > filename.htm

If you specify any other switches, they are ignored.

Prerequisites

To use the SQL Packager command line interface, you must have:

 a license for SQL Packager 6.0 (or later versions), a license for the Professional
Edition of SQL Packager version 5.5 and earlier, or a SQL Toolbelt license

If you do not have a license, you can use the command line for 14 days.

 .NET framework version 2.0 or later

This is required to run the command line interface, but it is not required when you

develop applications and scripts that use the interface.

 MDAC 2.8 or later

For information about distributing the command line interface with your application, see

Integrating the command line with applications (page 54).

Using the command line interface

© Red Gate Software Ltd 50

This topic describes how to use the basic features of the command line.

Getting help from the command line

To display help on any of the tools from the command line, enter:

sqlpackager /help

This displays a brief description of the tool, and basic help on all the command line

switches.

For more detailed help enter:

sqlpackager /help /verbose

This displays a detailed description of each switch and the values it can accept (where

applicable), and all exit codes. To output the help in HTML format, enter:

sqlpackager /help /verbose /html

Entering a command

When you enter a command line, the order of switches is unimportant. You are

recommended to follow the Microsoft convention of separating a switch from its values

using a colon as shown below.

/out:output.txt

(You can separate a switch that accepts a single value from its value using a space, but

this is not recommended.) Values that include spaces must be delimited by double

quotation marks ("). For example:

/out:"c:\output file.txt"

Note that if you delimit a path with double quotation marks, you must not terminate the

path with the backslash character (\), because the backslash will be interpreted as an

escape character. For example:

Incorrect: /location:"C:\Packages\"

Correct: /location:"C:\Packages"

For switches that accept multiple values, use commas to separate the values. For

example:

/options:IncludeDependencies,ForceColumnOrder

For switches that accept a compound value, separate each part of the value using a

colon. For example, the /includeschema and /excludeschema switches are used to include

and exclude database objects from the actions performed by the tool. For example:

/includeschema:table:Product

includes all tables for which the table name contains the word Product.

Basic command line features

© Red Gate Software Ltd 51

Aliases

Many of the switches have an alias. The alias provides a convenient short -hand way to

specify the switch. For example, /? is the alias for the /help switch, and /v is the alias for

the /verbose switch. Note that switches and aliases are not case-sensitive.

/options switch

You can use the /options switch to change your options. For example, by default,

comparisons are not case-sensitive; to specify case-sensitive comparisons:

/options:CaseSensitiveObjectDefinition

However, note that if you set any options explicitly, all of the default options are switched

off.

Refer to the full command line help for more information about which options are set by

default, and all the options that are available.

/verbose and /quiet switches

The standard output mode prints basic information about what the tool is doing while it is

executing. You can specify verbose and quiet modes using the /verbose and /quiet

switches, respectively: in verbose mode, detailed output is printed; in quiet mode, output

is printed only if an error occurs.

Redirecting command output

Output from all commands can be redirected to a file by one of several methods:

 Use the /out switch to specify the file to which you want output directed:

sqlpackager ... /out:outputlog.txt

where outputlog.txt is the name of the file. If the file exists already, you must also

use the /force switch to force the tool to overwrite the file, otherwise an error will

occur.

 Use the output redirection features that are provided by the shell in which you are

executing the command.

From the standard command prompt provided by Windows, you can redirect output to

a file as follows:

sqlpackager ... > outputlog.txt

Note that the redirection operator (>) and file name must be the last items on the

command line.

If the specified file exists already, it will be overwritten. To append output from the

tool to an existing file, for example to append to a log without losing the data already

present in the log, enter the following:

sqlpackager ... >> existinglog.txt

If you are scripting using a language such as VBScript, JScript, PHP, Perl, or Python,

or if you want to access the tool from Web pages using ASP.NET, refer to the

documentation for the language.

 Specify command line arguments in an XML file that can be referenc ed using the
/argfile switch.

For details, see Using XML to specify command line arguments (page 52).

© Red Gate Software Ltd 52

You can use an XML file to specify the arguments for the command line interface. You

may want to do this because:

 An XML file is easier to read than a long and complex command line, particularly
where complex rules for including and excluding objects are specified.

 You can easily transform an XML file into other formats using XSLT.

For example, you could transform your argument file to HTML for presentation on a

Web page.

 Using an XML file overcomes some limitations that can be a problem when you want
to specify regular expressions as command line arguments.

For example, you may want to use the pipe character (|) as part of a regular

expression, but it causes problems when it is used at the command prompt; if you use

an XML file you can use the pipe character with no problems.

 Most programming languages support XML, through built -in or freely available third-

party libraries.

This makes it easy to generate and process the XML file.

Create the XML file in the following format:

<?xml version="1.0"?>

<commandline>

 <switch_name1/>

 <switch_name2>switch_value</switch_name2>

</commandline>

For example, for the /includeschema and /excludeschema switches, use the following

format:

<includeschema>objecttype:RegularExpression</includeschema>

To execute the command line tools using an XML argument file as input, at the command

prompt enter:

sqlpackager /argfile:XMLfilename.xml

When you use an XML file to supply the arguments, you cannot specify any other

switches on the command line except /verbose or /quiet.

Using XML to specify command line arguments

© Red Gate Software Ltd 53

This topic provides some simple examples of how to use the command line interface.

You may also wish to refer to Frequently asked questions for the command line (page

55).

Packaging databases

To package database WidgetSales on the local SQL Server, creating a package executable

called WidgetPackage.exe in C:\Packages, which will create a new, identical database:

sqlpackager /database1:WidgetSales /location:"C:\Packages"

 /name:WidgetPackage /makeexe

To create the same package and run it immediately (for example, if you want to test the

package):

sqlpackager /database1:WidgetSales /location:"C:\Packages"

 /name:WidgetPackage /makeexe /run

To package database WidgetSales on the local SQL Server, creating a C# project called

WidgetPackage in C:\Packages\Projects, which will create a new, identical database:

sqlpackager /database1:WidgetSales /location:"C:\Packages\Projects"

 /name:WidgetPackage /makeproject

To create the same package and open it immediately in Microsoft® Visual Studio®:

sqlpackager /database1:WidgetSales /location:"C:\Packages\Projects"

 /name:WidgetPackage /makeproject /open

To package an upgrade from WidgetDev to WidgetLive creating a package executable

called WidgetPackage.exe in C:\Packages:

sqlpackager /database1:WidgetDev /database2:WidgetLive

 /location:"C:\Packages" /name:WidgetPackage /makeexe

In this example, when the package is run, WidgetLive will be updated.

Using /presql and /postsql

Packages created by SQL Packager support the /presql and /postsql switches. These

switches allow you to specify SQL scripts to run before and after the package executes.

Note that any SQL scripts specified by /postsql are always run, even if errors occur when

the package executes.

For example to run the script WidgetPostScript.sql after the package WidgetPackage.exe:

widgetpackage.exe /postsql:WidgetPostScript.sql

Examples using the command line

© Red Gate Software Ltd 54

To integrate the SQL Packager command line tool with applications that you distribute to

your customers, you must have one of the following licenses:

 SQL Packager 6.0 (or later)

 SQL Packager Professional Edition 5.5 (or earlier)

 SQL Toolbelt

When you have a license, and you execute the tool, the distribution files that you need to

distribute the applications are generated; these files are marked with an asterisk (*)

below.

The files that you should bundle into your application installer are listed below. The files

should be installed in the same folder in which your application is installed.

Note that to distribute a package created with the SQL Packager command line, you need

to distribute only the package executable.

 SQLPackager.exe

 RedGate.CommandLine.Common.dll

 RedGate.SQLPackager.Distribution.dll*

 RedGate.SQLPackager.Distribution.mod*

 RedGate.Shared.SQL.dll

 RedGate.Shared.Utils.dll

 RedGate.SQlCompare.ASTParser.dll

 RedGate.SQLCompare.Rewriter.dll

 RedGate.SQLCompare.Engine.dll

 RedGate.SQLCompare.CommandLine.dll

 RedGate.SQLDataCompare.Engine.dll

 RedGate.SQLDataCompare.CommandLine.dll

 RedGate.SQLPackager.Engine.dll

 RedGate.SQLPackager.CommandLine.dll

 SQLPackager.exe.config

 RedGate.Compression.ZLib.dll

 SQL Packager Code Templates (folder)

Integrating the command line with applications

© Red Gate Software Ltd 55

Licensing

How do I activate the command line tools?

To use the SQL Packager command line interface, you must have one of the follow ing

licenses:

 SQL Packager 6.0 (or later)

 SQL Packager Professional Edition 5.5 (or earlier)

 SQL Toolbelt

You can also redistribute your application if you have a valid license. For more

information, see Integrating the command line with applications (page 54).

Comparing databases

How can I include or exclude the object definition for specific tables?

You can use the /includeschema or /excludeschema switch with regular expressions to do

this.

How can I include or exclude the data for specific tables?

You can use the /includedata or /excludedata switch with regular expressions to do this.

What is included or excluded when I use a project?

When you use a project, all objects and data that were selected for inclusion when the

project was saved are automatically included; you do not need to explicitly include them

using the /includeschema or /includedata switches. You can override the inclusion by

specifying the /excludeschema or /excludedata switches as required.

Integration

How do I integrate the command line tools with applications?

For information about how to integrate the command line tools with applications that you

distribute to your customers, see Integrating the command line with applications (page

54).

How do I integrate database package creation with a build process?

You may want to install a package as part of your application installation process. You

can create the package during the build, bundle it as part of your installer, and set up the

installer to execute it at the appropriate point during the installation.

Frequently asked questions for the command line

© Red Gate Software Ltd 56

The build script example below shows how you would execute the SQL Packager

command line tool from an NAnt (http://nant.sourceforge.net/) build script. You can

modify this task for use with other build systems such as Visual Build.

...

<!-- Use your SQL command line installation directory -->

<property name="sqlCmdLineInstallDir" value="..."/>

...

<target name="PackageDatabase"

description="Create executable database package.">

 <exec

 basedir="${sqlCmdLineInstallDir}"

 program="sqlpackager.exe"

 commandline="/database1:FirstDatabaseName /makeexe

 /name:PackageName

 /location:TargetDirectoryName"/>

</target>

...

By default, NAnt captures the output of the program and incorporates it as part of the

build log. Alternatively, you can use the output attribute of the exec task to specify a file

to which the output is to be redirected.

http://nant.sourceforge.net/

© Red Gate Software Ltd 57

Copyright information

© Red Gate Software Ltd 1999 - 2008.

Trademarks and registered trademarks

Red Gate is a trademark of Red Gate Software Ltd registered in the U.S. Patent and

Trademark Office. SQL Packager is a trademark of Red Gate Software Ltd.

Microsoft, Windows, Windows 98, Windows NT, Windows 2000, Windows 2003, Windows

XP, Windows Vista, Visual Studio, and other Microsoft products referenced herein are

either registered trademarks or trademarks of Microsoft Corporation.

This product contains software that is Copyright © 1995 - 2005 Jean-loup Gailly and Mark

Adler.

Acknowledgements

© Red Gate Software Ltd 58

When you create an .EXE or a C# project, you can specify extra information about the

package, which can be viewed when the package is run.

To display the Extra Package Info dialog box, on the Create .EXE (page 29) or Create

C# Project (page 31) page of the Packager Wizard, click Extra Package Info.

You can type free form notes on the Package Info tab.

Entering extra package information

© Red Gate Software Ltd 59

If you are creating a package for a new database, you can specify the database

properties by clicking the Database Properties tab.

Enter the details as required. Note the following:

 Collation is dependent on the target system.

 Compatibility level must be compatible with the latest version database that you

specified when you chose the database to package.

You can access these details at runtime from the Run Package dialog box, and amend

them if required. For more information, see Running the Package (page 34).

Note that for upgrades, you can specify only the database name to be used when the

package is run.

© Red Gate Software Ltd 60

Choosing a project type > Specifying contents (page 21) > Previewing scripts (page 27) > Specifying a
package type > Running (page 34)

When you have finished reviewing the SQL scripts, specify the package type:

 package as an .EXE (page 29) (as a .NET executable)

 package as a C# project (page 31)

From the Specify package type page of the Packager Wizard, you can also launch the

script in your default SQL editor, or save the script.

Specifying a package type

© Red Gate Software Ltd 61

The data packaging options (page 33) are a set of advanced features that enable you to

modify the behavior of SQL Packager when it packages data. For example, you can set

options so that triggers are disabled when you upgrade a database and then, when the

upgrade is complete, re-enable the triggers.

You can also set:

 schema options for packaging the structure of the database

 packager options for the .EXE or C# project

Disable foreign keys

Disables foreign keys before creating or upgrading the database, and re-enables them on

completion. Note that in some circumstances foreign keys will be dropped and recreated

rather than disabled and re-enabled.

Disable DML triggers

Disables DML triggers before creating or upgrading the database, and re-enables them on

completion.

For example, you may want to disable triggers if you have a trigger defined on a table

that inserts data into another table on INSERT, DELETE, or UPDATE; if you do not, the

data in the tables will change as the package is run, which will cause unpredictable

results.

Drop primary keys, indexes and unique constraints

Drops then recreates primary keys, indexes (including XML indexes and partitioned

indexes), and unique constraints before creating or upgrading the database, and re-

enables them on completion. If the primary key, index, or unique constraint is the

comparison key, it cannot be dropped.

Select this option to ensure that unique constraints are not violated when data is inserted

into tables or modified. When the constraints are re- created, the data is verified to

ensure that no constraints have been violated. (If they have, the script will fail.)

Use transactions in SQL scripts

If this option is selected and the script fails, the script is rolled back to the start of the

failed transaction. If this option is not selected, the script is not rolled back. This can be

useful for detection of errors within a script.

Transport CLR types as binary

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

If this option is selected, SQL Packager uses the binary representation of CLR types; if

this option is not selected, SQL Packager uses the string representation. Note that string

representations do not always contain the full information about the data.

Setting data packaging options

© Red Gate Software Ltd 62

Disable DDL triggers

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

Disables DDL triggers before creating or upgrading the database, and re-enables them on

completion.

Trim trailing spaces

If the data in two columns differs only by the number of spaces at the end of the string,

SQL Packager considers the data to be identical. This option does not apply to CLR or XML

columns.

If this option is selected, trailing spaces are ignored when creating or upgrading

databases.

Force binary collation

SQL Packager uses keys to compare rows. If the comparison key is a string, this option

forces a binary collation on all string sorting.

Use checksum comparison

Performs a checksum prior to comparison. The data is compared only if the checksums

differ. Note that if the data differs only in text or image columns, the chec ksums will be

identical and SQL Packager will consider the data to be identical.

For SQL Server 2000, db_owner permissions are required.

Ignore case

When you are upgrading a database, SQL Packager will ignore the case of the object

names, if this option is selected. For example, SQL Packager will consider [dbo].[Widget]

to be the same as [dbo].[wIDgEt] and will compare the data in the two tables.

Note that if the databases that you are upgrading are running on a SQL Server that uses

case-sensitive sort order, you should ensure that this option is cleared.

Ignore spaces

When you are upgrading a database, SQL Packager will ignore spaces in object names, if

this option is selected. For example, SQL Packager will consider [dbo].[Widget Prices] to

be the same as [dbo].[WidgetPrices] and will compare the data in the two tables.

Ignore underscores

When you are upgrading a database, SQL Packager will ignore underscores in object

names, if this option is selected. For example, SQL Packager will consider

[dbo].[Widget_Prices] to be the same as [dbo].[WidgetPrices] and will compare the data

in the two tables.

Include indexed views

If this option is selected, SQL Packager includes indexed views in the upgrade. Generally,

views can be updated only if the referenced rows are from a single table, and the

© Red Gate Software Ltd 63

referenced columns are simple (for example, they must not include identity columns or

computed columns).

Include timestamp columns

If this option is selected, SQL Packager will compare timestamp columns when you are

upgrading a database. Note that timestamp columns cannot be included in the data

packaging script.

Include identity columns

Includes identity columns in the package. Note that if you do not select this option and an

identity column is used as the primary key for a table, it will be included in the packaging

script.

© Red Gate Software Ltd 64

The packager options (page 33) enable you to specify default settings for your packages.

SQL Packager uses the packager options when you create an .EXE (page 29) or a C#

project (page 31).

You can also set:

 schema options for packaging the structure of the database

 data options for packaging the data

Automatically increment package name (if already exists)

If an executable file or project file with the same name already exists at the default

package location, SQL Packager will automatically increment the package name when this

option is selected.

Default package location

You use this setting to specify the default location for your package files. Type or select

the path for the Default package location, or click the browse button to choose the

folder.

Setting SQL Packager options

© Red Gate Software Ltd 65

The schema packaging options (page 33) are a set of advanced features that enable you

to modify the behavior of SQL Packager when it packages the database structure. For

example, you can set SQL Packager so that it ignores certain objects, or so that it does

not script certain properties in the package (such as the c ollation order on columns).

You can also set:

 data options for packaging the data

 packager options for the .EXE or C# project

Include dependencies

When this option is selected, SQL Packager checks for object dependencies; if you

excluded objects and other objects that you selected are dependent on the excluded

objects, the excluded objects are packaged. For example, if you select a stored procedure

and it references a table, even if you excluded that table, the table is still packaged.

By default, SQL Packager will include dependencies in the package. Clear the option if you

do not want to include the dependencies. Note that clearing this check box may produce

unexpected results or the script may fail. Roles and users are always included in the

package.

Ignore indexes

Ignores indexes, unique constraints, and primary keys when packaging the database

structure.

Ignore statistics

Ignores statistics when packaging the database structure.

Ignore foreign keys

Ignores foreign keys when packaging the database struc ture.

Ignore check constraints

Ignores check constraints when packaging the database structure.

Ignore identity seed and increment values

For identity properties, ignores only the identity seed and increment values when

displaying the objects that are available for packaging. Note that they will be included in

the schema packaging script.

Setting schema packaging options

© Red Gate Software Ltd 66

Ignore fill factor and index padding

Ignores the fill factor and index padding in indexes and primary keys when packaging the

database structure.

Ignore permissions

Ignores permissions on objects when packaging the database structure.

Ignore DML triggers

Ignores DML triggers when packaging the database structure.

Ignore INSTEAD OF triggers

Ignores INSTEAD OF DML triggers when packaging the database structure.

Ignore bindings

Ignores bindings on columns and user-defined types. For example, sp_bindrule and

sp_bindefault clauses will not be included in the schema packaging script.

Ignore WITH NOCHECK on foreign keys and check constraints

Ignores the WITH NOCHECK argument on foreign keys and check constraints.

Note that foreign keys or constraints that are disabled, are not ignored.

Ignore constraint and index names

Ignores the names of indexes, foreign keys, primary keys, and default, unique, and check

constraints when displaying the objects that are available for packaging. Note that they

will be included in the schema packaging script.

Ignore filegroups, partition schemes and partition functions

Ignores filegroup clauses, partition schemes, and partition functions on tables and keys

when packaging the database structure. Partition schemes and partition functions are not

available for inclusion in the package when this option is selected.

Force table column order to be identical

If additional columns are inserted into the middle of a table, this option forces a rebuild of

the table so the column order is correct following upgrade. Data will be preserved.

Ignore white space

Ignores white space (newlines, tabs, spaces, and so on) when displaying the objects

available for packaging. Note that white space will not be ignored when the objects are

created or upgraded.

© Red Gate Software Ltd 67

Ignore comments

Ignores comments when comparing views, stored procedures, and so on. Note that

comments will be included in the schema packaging script.

Ignore extended properties

Ignores extended properties on objects and databases when packaging databases.

Treat items as case sensitive

For databases with case-sensitive collation, enables objects with case-sensitive names to

be packaged. For example, considers object names such as ATable and atable as different

and performs case-sensitive comparisons on stored procedures, and so on.

You should use this option only if you have databases with binary sort order or case-

sensitive sort order.

Ignore SET QUOTED_IDENTIFIER and SET ANSI_NULLS statements

Ignores these SET statements when displaying available views, stored procedures and so

on. Note that these statements will be included in the schema packaging script.

Ignore collation order

Ignores collation order on character data type columns when packaging databases.

Ignore full text indexing

Ignores full-text indexes, catalogs, and so on when packaging databases.

Do not include plumbing for transactional synchronization scripts

Removes transactions from the package to produce SQL c ode that is more readable.

If this option is not selected and the package fails, the script is rolled back to the start of

the failed transaction. If this option is selected, the script is not rolled back. This can be

useful for detection of errors within a script.

Add WITH ENCRYPTION option to stored procedures etc

Adds WITH ENCRYPTION when stored procedures, functions, views, and triggers are

included in the package.

Note that if you use ADD ENCRYPTION on a SQL Server 2008 or SQL Server 2005

database, SQL Packager will not subsequently be able to display, or package the

encrypted objects.

Do not use ALTER ASSEMBLY to change CLR types

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

If CLR types are to be packaged, this option forces two rebuilds of the table with

conversion to and from strings to update the CLR types, instead of using ALTER

ASSEMBLY. For a detailed explanation, see Understanding the Results (page 38).

© Red Gate Software Ltd 68

Consider next filegroups in partition schemes

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

When this option is selected, if a partition scheme contains a next filegroup, SQL

Packager considers the next filegroup for the upgrade if the filegroup is extended. The

next filegroup does not affect the way in which data is stored. For a detailed explanation,

see Understanding the Results (page 38).

To ignore next filegroups, clear the check box.

Ignore certificates, symmetric and asymmetric keys

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

SQL Server 2005 severely restricts access to certificates, symmetric keys, and

asymmetric keys. Consequently, SQL Packager can package only the permissions of

certificates and asymmetric keys; symmetric keys cannot be packaged.

Ignore trigger order

DML triggers can have an order specified, such as FIRST INSERT, LAST UPDATE, and so

on. Select this option to ignore the trigger order for DML triggers when packaging

databases. Note that the DDL trigger order is not affected.

Ignore event notifications on queues

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

Ignores the event notification on queues when packaging databases.

Ignore users' permissions and role memberships

When role-based security is used, object permissions are assigned to roles, not users. If

this option is selected, SQL Packager creates or upgrades object permissions only for

roles, and members of roles that are roles. Users' permissions and role memberships are

ignored.

Ignore users' properties in comparison

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

If this option is not selected, SQL Packager compares user properties, such as the type of

user (SQL, Windows, certificate-based, asymmetric key based) and any schema to

identify differences. If a user is selected to be upgraded, SQL Packager upgrades the

properties where possible.

If you select this option, users' properties are ignored, and only the user name is

packaged.

Disable and later re-enable DDL triggers

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

© Red Gate Software Ltd 69

DDL triggers can cause problems when you run the packaging script. Select this option to

disable any enabled DDL triggers before upgrading the databases, and re-enable those

triggers on completion.

Ignore the order of WITH elements

If a stored procedure, user-defined function, DDL trigger, DML trigger, or view contains

multiple WITH elements (such as encryption, schema binding, and so on), select this

option to ignore the order of the WITH elements when packaging databases.

Ignore the lock properties of indexes

This option is used only for SQL Server 2008 and SQL Server 2005 databases.

Ignores index PAGE LOCK and ROW LOCK properties when packaging databases.

Ignore replication triggers

Ignores replication triggers when packaging databases.

Ignores identity properties

Ignores the identity property on columns when displaying the objects that are available

for packaging. Note that the identity property will be included in the schema packaging

script.

	O_1607
	O_5099
	H_4979
	O_5122
	H_4988
	O_5001
	O_5074
	O_5076
	O_5073
	O_5077
	O_5075
	H_756
	O_5206
	O_5078
	O_5123
	H_4989
	O_5002
	O_5174
	O_5081
	O_5085
	O_5083
	H_755
	O_5080
	O_5079
	H_4587
	H_4588
	O_5090
	O_5124
	O_5003
	O_5010
	O_4999
	O_5005
	O_5110
	O_5060
	O_5082
	O_5062
	O_5011
	O_5013
	O_5052
	O_5045
	O_5055
	O_5034
	O_5049
	O_5053
	O_5054
	O_5038
	O_5043
	O_5036
	O_5029
	O_5042
	O_5030
	O_5044
	O_5031
	O_5046
	O_5032
	O_5048
	O_5033
	O_5047
	O_5035
	O_5050
	O_5039
	O_5051
	O_5040
	O_5056
	O_5041
	O_5037
	O_5007
	O_5059
	O_5012
	O_5014
	O_5008
	O_5102
	O_5065
	O_5067
	O_5095
	O_5061
	O_5064
	O_5096
	O_5058
	O_5063
	O_5107
	H_766
	O_5104
	O_5105
	H_5178
	H_832
	O_5068
	H_842
	O_5069
	O_5114
	H_848
	O_5112
	O_5115
	O_5116
	O_5113
	H_7278
	H_849
	O_5009
	H_767
	O_5089
	O_5025
	O_5026
	O_5111
	O_5119
	H_855
	H_856
	O_5087
	H_858
	O_5120
	O_5093
	O_5092
	H_859
	O_5100
	O_5094
	H_857
	H_863
	O_4513
	O_5101
	O_5091
	O_5028
	O_5027
	O_5097
	H_4982
	H_768
	H_771
	O_5106
	O_5109
	H_769
	H_770
	O_5108
	H_792
	H_851

