ANTS Memory Profiler 5.0
June 2009

Note: these pages apply to a version of
this product that is not the current released version.

For the latest support documentation, please see
http://documentation.red-gate.com

redgate

ingeniously simple tools

http://documentation.red-gate.com/

(1=] o Yo =] =] o (=T PP 3

ANAlYZING MEMOIY USAGE 1.ttt et e et e e e e et e ae e eaeeaneaaneaneeanes 4
Strategies for memory profilingc.ioiiiiii e 8
ViIidEO TULOIIAIS v e 14
What to 100k for in the summany ... e 15
What to 100k for in the Class liSt ... e 17
What to look for on the class reference explorerccvviiiiiiiiii i e 19
What to look for in the instance listovieiiiiiii e 21
What to look for on the object retention graph........ccoiiiiiiiiii e 24
Using filters t0 find ODJECES ...iiiu i e 26
LiSt Of ODJECE filLOrS une i 29

© Red Gate Software Ltd 2

ANTS Memory Profiler enables you to profile memory usage of applications written in any
of the languages available for the .NET Framework, including Visual Basic .NET, C#, and
Managed C++. This is useful, for example, to improve memory usage by identifying the
objects and classes that use most memory, and objects that remain live the longest.

You can use ANTS Memory Profiler to profile .NET desktop applications, ASP.NET web
applications hosted in Internet Information Services (IIS) or the ASP.NET Development
Server, .NET Windows services, COM+ server applications, Silverlight 4 or later
applications, and XBAPs. In addition, you can profile applications that host the .NET
Runtime, for example Visual Studio .NET plug-ins.

You can use ANTS Memory Profiler with the following versions of the .NET Framework:
e 1.1 (32-bit applications only)

e 2.0 (32-bit or 64-bit applications)

e 3.0 (32-bit or 64-bit applications)

e 3.5 (32-bit or 64-bit applications)

e 4.0 (32-bit or 64-bit applications)

1. Use the Profiler Project Wizard to specify the details of the application that you want
to profile.

2. Take one or more memory snapshots.

Analyze the profiling results.

© Red Gate Software Ltd 3

You can analyze memory usage by looking at a snapshot of memory at a specific point in
time, or by comparing two snapshots. This topic outlines how to use the main ANTS
Memory Profiler features to analyze memory usage.

Start by choosing an application to profile, and then take one or more snapshots,
depending on the analysis you want to perform. ANTS Memory Profiler displays a
summary of memory usage in your selected snapshots. Analyzing memory usage has the
following main stages:

1. Snapshot analysis
2. Class analysis
3. Instance analysis

Before you begin, it may be useful to read background information about memory:
e Read suggested strategies for specific types of memory analysis

e Watch .NET memory management introduction video (http://www.red-
gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

)

Start by looking for classes that may indicate a memory leak, or classes with
unexpectedly high memory usage. Use object filters to restrict your investigation to
objects with specific characteristics or specific parts of the application.

The summary shows an overview of the main areas of memory usage; if you are
comparing two snapshots, this includes an overview of the main differences in memory
usage between the snapshots. In the summary or class list, look for classes with
unexpectedly high memory usage, or a large increase in size between snapshots.

The large object heap data can be useful for identifying fragmentation problems.

© Red Gate Software Ltd 4

http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

Find out more about what to look for in the summary

Mermory summary: snapshot 2 (11:56) Comparison: snapshot 2 (1 1:56) vs, snapshot 1 (00002
Classes with lsrgest size Lawgest growth in size
L] Le0,000 Eash TR 158,400
;19 N LA 7,648
b HELT 2% LA
% Loy tack LSO I,6lE
F5 3 & M atrsmblat +TRACKMOUEFEVENT [a8
Clawses with st instances argest grawth in nstances
BT &, 000 fenph TI A, 400
1% oM Lo 103
Lo 154 . Lo 10
1% 144 N 103
i i1 L] 2
Large Object Hesp details Large Object Hea changes
Frae spece o ol NET heaps 16,419,560 Trawnige in fres s . - 163,44
Largest e block 16,419,528 Change in Lrgest frss biock e +5,L12
Maceam sige me ohisct (approce,) T 330,751 Chargs in macdmurs moe ey ohiject ey n

e The class list shows detail of memory usage per class. On the summary or class list,
look for classes with unexpectedly high memory usage, or a large increase in size
between snapshots.

Find out more about what to look for in the class list

Harespans Clats K Liwe Sipw [bates) e DT dvies =] Live Irshanoes. Tnstance D [+
[T —— o —— e 18D, 00 + 150,400 & 5,000 +5.400 & |
=yatan g PR - e a0 -2
Syiten | LRI v OOTE A 144 ey
Sistean Eyie{] ol 442 0 - 4) -
Systen Sringl] B, - 2 =
Syaten Windows Fa... | DwdcsConbecd B, 500 + 7,048 & 15 + 105 &
Syuten Colecton Fanhtable +ouckai]] 184 & - n O -
Syl Conlapraes | Facborpiacon] | i = L
St Colon Sk Z,BE6 +2506 & 15 +10% k
Systen FambimsType LT +3 A 144 +1 A
ey e—— Rond{] 7,70 o - 7z -
Shapei amtsr thgseShaps 2,640 = [Q-
SaEn Lk} 558 i = 24 i -
Shapefmnter Bettangleshape %0 0 = Lo L
ShapePrinter TrisngieShape z,100 - g -
=yuten char] 5,510 T - 23 -
Syiten Dbt 1,E0 2 150 1

2. Class analysis

Identify instances of classes which you do not expect to be in memory, or instances with
unexpectedly high memory usage. Use object filters to restrict your investigation to
objects with specific characteristics or specific parts of the application.

e The class reference explorer shows reference relationships between classes, which
can help identify instances which are unexpectedly kept in memory. This can be
particularly useful if your snapshot analysis identifies a class you do not recognize:

© Red Gate Software Ltd 5

Use the explorer to follow chains of references to the class, until you reach a class you
recognize which may be responsible for the memory usage.

Find out more about what to look for on the class reference explorer

e The instance list shows detail for all instances of a class, which can help identify
instances which are the likely cause of a memory problem.

Find out more about what to look for in the instance list

Mew Object | Vialse e (bytes) Size with Children (bytes) G Root Obgect Distance from GC Rook
Mo | @ Signatre z 7 0 Mo | 7|
s Signahre 48 60 Mo 7
hio Sgnature 48 68 Mo 3
Yes Signators 43 72 Mo 10
s Signature a8 &8 Mo 1
Tes Signature 43 7l Mo 10
ik Sgnature 48 68 Mo 10
e Signature 48 T2 Mo 14
s Signarhure 48 68 Mo 1
s Sgnahse 45 fi Mo 10

Investigate what is keeping a selected object in memory unexpectedly.

The object retention graph shows chains of references between GC roots and your
selected object. Start at your selected object and follow the chains of references up
towards the GC roots, to identify references that are preventing the garbage collector
from collecting your object. When you find an unexpected reference, modify your code to
break the reference, and then profile the application again to check the problem is fixed.

© Red Gate Software Ltd 6

Find out more about what to look for on the object retention graph

[ShapePainterShapes |
[(this a5 ColectionBass) st |

-

| System.Collections ArrayList |

System. Object{]
I tems J

-

 Eerfmraiotemgr scorlinier |

-
(/Srtem.Confouration ClhentConfgurationsystem',
b _cmhw::ﬁgmud F

(System . Configuration. RuntimeConfigurationRecord 1
| this as BaseConfiguraton Record)._secbonRecords J

Y

[System.Collections Hashtable |
||. buckets I
1
(System.Collections.Hashtable+ bucket[]]
[hstemxoriwmjt_ion.ﬁectionkemrd]
| _result |
_resultfuntmeObject

T

(Sy sbem. Windows.Form s. WindowsFormsSection
[[thi= &2 Canfigur sbonElement], _values

[- System . Configuration ConfigurationV alues
| (this as NameDbjectCollectionBase),_entriasArray

Y

System.Collections ArrayList |
_fems I

|‘
$

=D '

© Red Gate Software Ltd

This topic contains guidelines and recommendations about common memory profiling
scenarios, including some heuristics about memory usage patterns that might indicate a
memory problem. Of course, every application is different, so these guidelines only
outline strategies for memory profiling; to apply these strategies you will need a good
understanding of your application.

e Finding a memory leak
e Checking that a memory leak is fixed
e Finding out what is using most memory

e Checking for memory problems

When you are investigating memory usage, background information about .NET memory
management may be useful. Some good starting points:

.NET Memory Management (video overview)

http://www.red-
gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
(http://www.red-
gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html)

Garbage Collection: Automatic Memory Management in the Microsoft .NET Framework
http://msdn.microsoft.com/en-us/magazine/bb985010.aspx
(http://msdn.microsoft.com/en-us/magazine/bb985010.aspx)

Memory Management in .NET

http://www.c-sharpcorner.com/UploadFile/tkagarwal/
MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx
(http://www.c-
sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/M
emoryManagementInNet.aspx)

CLR Inside Out: Large Object Heap Uncovered
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
(http://msdn.microsoft.com/en-us/magazine/cc534993.aspx)

Dangers of the Large Object Heap
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-
heap/ (http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-
object-heap/)

The following examples outline some approaches to finding a memory leak for some
common scenarios.

© Red Gate Software Ltd 8

http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://msdn.microsoft.com/en-us/magazine/bb985010.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/

We recommend that you make a note of the steps you take when you are looking for a
memory leak, so that you can perform the same actions later to check that you have
fixed the leak.

The snapshots and analysis you perform depend on the functionality of your application.

This scenario is the most straightforward, so it is recommended as the preferred way of
finding a memory leak.

1. Start ANTS Memory Profiler and start profiling your application. Get the application
into the state in which you are interested in its memory.

2. Take two snapshots, so you can compare memory usage before and after the action
that you believe leaks memory:

a. Take the first snapshot.

b. Perform an action that you believe causes a leak; then perform the actions that
should clean up any objects created by the first action.

For example, open a dialog box, change some settings, and then close the dialog
box.

c. Take a second snapshot.

Objects created by the action should be cleaned up before the second snapshot, so
any new objects created in the second snapshot are likely to indicate a memory leak.

3. Apply the Only new objects filter to show only the classes with new instances in the
second snapshot.

4. On the class list, look for classes with a high positive value in the Instance Diff or
Size Diff column. These values indicate the classes responsible for increased memory
usage in your second snapshot, so they are good indicators of the likely cause of a
memory leak. At this stage, we recommend that you look at all classes (not just the
classes you recognize): although your own classes may be responsible for the
memory leak, the symptoms of the leak may be increased usage in other classes,
such as System. String.

5. Look at instances of classes with unexpectedly high growth in size or number of
instances:

+ If the class that looks interesting is one you recognize, look at instances on the
instance list.

+ If the class that looks interesting is not one you recognize, use the class reference
explorer to navigate along the chain of references to objects in this class, until you
reach a class you recognize. Next, look at instances of that class on the instance
list.

6. On the instance list, look for objects with a high value in the Distance from GC Root
column.

Often, leaked objects are found at a greater distance from their nearest GC root
because all the obvious, shorter chains of reference from a GC root to an object have
been broken already.

© Red Gate Software Ltd 9

7. Show the object retention graph for the object that looks interesting. Follow chains of
references up the graph to identify objects keeping your object in memory
unexpectedly.

8. When you find an unexpected reference, modify your code to break the reference, and
then profile the application again to check the problem is fixed.

1. Start ANTS Memory Profiler and start profiling your application. Get the application
into the state in which you are interested in its memory.

2. Take two snapshots, so you can compare memory usage before and after the action
that you believe leaks memory:

a. Perform the action that you believe causes a leak. For example, populate a list
with data.

b. Take the first snapshot during or immediately after this action - that is, before any
clean-up happens.

c. Perform the action that should clean up the objects created by the first action. For
example, clear the data from your list.

d. Take a second snapshot.

Objects should be cleaned up between snapshots, so any remaining objects were
probably created by the first action.

3. Apply the Only surviving objects filter to show only classes that exist in both
snapshots.

4. On the class list, look for classes with a high value in the Live Instances or Live
Size column. These values indicate the classes responsible for memory usage in your
snapshots. At this stage, we recommend that you look at all classes (not just the
classes you recognize): although your own classes may be responsible for the
memory leak, the symptoms of the leak may be increased usage in other classes,
such as System.String.

5. Look at instances of the class with unexpectedly high size or number of instances:

+ If the class that looks interesting is one you recognize, look at instances on the
instance list.

+ If the class that looks interesting is not one you recognize, use the class reference
explorer to navigate along the chain of references to objects in this class, until you
reach a class you recognize. Next, look at instances of that class on the instance
list.

6. On the instance list, look for objects with a high value in the Distance from GC Root
column. Often, leaked objects are found at a greater distance from their nearest GC
root because all the obvious, shorter chains of reference from a GC root to an object
have been broken already.

7. Show the object retention graph for the object that looks interesting. Follow chains of
references up the graph to identify objects keeping your object in memory
unexpectedly.

© Red Gate Software Ltd 10

8.

When you find an unexpected reference, modify your code to break the reference, and
then profile the application again to check the problem is fixed.

This way of finding a memory leak is recommended:

if you are not sure what functionality or actions are causing the memory leak

for applications where you expect memory to be constant, but instead memory usage
increases slowly

for applications that do not have functionality that you can manually execute and then
clean up

Start ANTS Memory Profiler and start profiling your application.

Run your application and monitor memory usage on the timeline. When memory
usage starts to increase, take several snapshots (the frequency and number of
snapshots you need to take depends on your application and how rapidly memory
increases).

Select two snapshots to compare.

If there are classes that you expect to be large or increasing in size, apply the Never
referenced by an instance of class filter to remove these classes from the results.

On the class list, look for classes with a high value in the Size Diff column. This value
indicates the growing classes, so it is a good indicator of a memory leak. At this
stage, we recommend that you look at all classes (not just the classes you recognize):
although your own classes may be responsible for the memory leak, the symptoms of
the leak may be increased usage in other classes, such as System.String.

Look at instances of the class with the largest difference in size between snapshots:

+ If the class that looks interesting is one you recognize, look at instances on the
instance list.

+ If the class that looks interesting is not one you recognize, use the class reference
explorer to navigate along the chain of references to objects in this class, until you
reach a class you recognize. Next, look at instances of that class on the instance
list.

On the instance list, apply the Only surviving objects filter to show only the classes
that exist in both snapshots, and then look for high values in the Live Size column.
This identifies the largest objects, which have stayed in memory for longest, so may
indicate the cause of a leak.

Show the object retention graph for the largest object that should not be in memory.
Follow chains of references up the graph to identify objects keeping your object in
memory unexpectedly.

When you find an unexpected reference, modify your code to break the reference, and
then profile the application again to check the problem is fixed.

© Red Gate Software Ltd 11

The following steps outline how to check that a memory leak you previously identified is
now fixed:

1.

Repeat the steps you used to find the memory leak. If you are looking for a particular
class or object, it may be useful to use the £ find box to locate the class or object
you are interested in.

If you have fixed the leak, the objects should not be in memory.

If an unexpected instance does seem to still be in memory, display the object on the
object retention graph, and check whether it is on the finalizer queue (clear the Hide
finalizer queue GC roots option on the bar above the graph). If your object is on
the finalizer queue, take another snapshot and check again: the object may be
removed when the garbage collector runs.

The following steps outline how to find out what classes are using most memory in your
application.

1.

Start ANTS Memory Profiler and start profiling your application. Get the application
into the state in which your are interested in its memory, and then take a memory
snapshot.

On the class list, look for the largest classes, or the classes with the highest number
of instances. For this analysis, you are going to explore memory usage by following
references to a class, so it is not important if you do not recognize these classes.

Select a class and display the class reference explorer. Use the explorer to look at
what is keeping your selected class in memory.

Start by looking at the class with the highest number of direct references to objects in
your selected class (this is the class at the top of the graph, to the left of your
selected class). Click on the class to show classes that refer to it, and then continue to
follow the chain of references to understand what is keeping the instances of your
selected class in memory.

For example, System.String is often the largest class; using this class reference
explorer you can find out what is keeping strings in memory.

The following steps outline how to carry out a systematic check of memory usage, to
determine whether there are any memory problems.

1.

Before you start, work out a plan for what functionality or states you want to check.
You will need to be methodical about taking snapshots at the appropriate times to
check these states, and you will need to have a good understanding of the expected
memory usage - so you can identify unexpected memory usage.

Start ANTS Memory Profiler and start profiling your application. Take a snapshot of
the application in each of the states you want to compare. Depending on what you are
trying to discover, it may be sufficient to take a snapshot before and after performing
actions, or you may need to take additional snapshots during use, so that you can
analyze memory usage throughout.

© Red Gate Software Ltd 12

3. It may help with your analysis if you change the name of the snapshots so that they
are easier to recognize.

4. For each state that you want to check on, select a baseline and current snapshot in
the Snapshots bar. Alternatively, you can check on memory usage in a single state in
isolation: from the Current list, select the snapshot you are interested in; from the
Baseline list, select No baseline.

¢+ Look at each snapshot to understand where memory is being used in each state.
Find out more about how to identify what is using most memory

+ Compare pairs of snapshots to check for memory leaks.
Read suggested strategies for finding memory leaks

¢+ Use the object filters to check for common indicators of memory leaks.
Find out more about using filters

¢+ Look for fragmentation problems on the large object heap

Read tips on identifying fragmentation problems on the large object heap

© Red Gate Software Ltd 13

Watch the video tutorials to see examples of ANTS Memory Profiler in action, and learn
more about some areas of functionality:

e Finding a memory leak (http://www.red-
gate.com/products/ants_memory_profiler/overview.htm)

e Using filters to speed up your search for memory problems (http://www.red-
gate.com/products/ants_memory_profiler/filters.htm)

e Using the class reference explorer to find a memory leak (http://www.red-
gate.com/products/ants_memory_profiler/class_reference.htm)

e Using the timeline (http://www.red-
gate.com/products/ants_memory_profiler/timeline.htm)

For a general introduction to .NET memory management:

e _.NET memory management (http://www.red-

gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

)

© Red Gate Software Ltd

14

http://www.red-gate.com/products/ants_memory_profiler/overview.htm
http://www.red-gate.com/products/ants_memory_profiler/overview.htm
http://www.red-gate.com/products/ants_memory_profiler/filters.htm
http://www.red-gate.com/products/ants_memory_profiler/filters.htm
http://www.red-gate.com/products/ants_memory_profiler/class_reference.htm
http://www.red-gate.com/products/ants_memory_profiler/class_reference.htm
http://www.red-gate.com/products/ants_memory_profiler/timeline.htm
http://www.red-gate.com/products/ants_memory_profiler/timeline.htm
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

The summary shows an overview of the main areas of memory usage; if you are
comparing two snapshots, this includes an overview of the main differences in memory
usage between the snapshots. In the summary or class list, look for classes with
unexpectedly high memory usage, or a large increase in size between snapshots.

The large object heap data can be useful for identifying fragmentation problems.

Memory summary: snapshot 2 (1 1:56) Comparison: snapshat 2 (1 1:56) vs, snapshot 1 (00002)
lasses with lwgest size 1 mgk it
e LED 00 33 158,400
1% RS L ¥ bl
% M A2 1% 6,07
2% 10, +4E L Bl
% &, L 2 + i] s
Mazsrs wakh st ingtances sk grassth in matances
BT 5,000 T 4,400
1% S L 103
1'% 154 s 10
L% 144 M 103
L% 14 (2] 2
Large (bject Heas details Large Object Heap changes
Frae space of o FET haages 16,419 560 Trange in fres spacs o = 163,44
Lawgest s biock, 6419858 Change in largest fres biock. e & +5.132

Masirusm stom ras chriect {approo:. | 200 30,551 Change in mecimun o e ohisct o 0

The charts for size and number of instances can be useful starting points for identifying
the classes that use most memory.

If you are comparing two snapshots, the charts for growth in size and number of
instances show the five classes which are responsible for the largest increase between the
two snapshots. This information can be useful for identifying classes which are growing.

Click on a class to show more detail about it on the class list.

The large object heap charts show an overview of memory availability for the large object
heap.

© Red Gate Software Ltd 15

e Free space on all .NET heaps shows the total amount of memory reserved for .NET

but not currently used.

e Largest free block shows the size of the largest block of unused memory that is
currently reserved for .NET.

e Makx. size of new object shows an estimate of the size of the largest object that can
be allocated. This value is always at least the size of the largest free block, and may

be larger where it is possible to extend the large object heap by reserving more
memory.

This information is not available when you profile a .NET 1.1 application.

CLR Inside Out: Large Object Heap Uncovered
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
(http://msdn.microsoft.com/en-us/magazine/cc534993.aspx)

Dangers of the Large Object Heap
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-
heap/ (http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-

object-heap/)

The following states can indicate fragmentation problems:

+ The Largest free block size is small, but the Free space on all .NET heaps size
is large. Although there is plenty of unused memory, the blocks of contiguous
unused memory are small, so there may be a danger of running out of memory
because the memory is not used efficiently.

+ The Max. size of new object size is small, but the Free space on all .NET
heaps size is large. Although there is plenty of unused memory, it may not be
possible to allocate memory for new large objects, because available contiguous
memory slots are small and it is not possible to allocate more memory to increase
the size of the large object heap.

When Max. size of hew object is smaller than the amount of memory that your
application tries to allocate for a new object, the application will fail with an
OutOfMemoryException.

To investigate objects on the large object heap further, apply the Objects on the
large object heap filter. This can be useful, for example, to find out which objects
are currently in memory, and why they are in memory.

What to look for in the summaryccoviiiiiiiiiiiiiees 15
What to look for on the class reference explorer 19
What to look for in the instance list..........ccoviiiiiiinne, 21
What to look for on the object retention graph 24

© Red Gate Software Ltd 16

http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/

The class list shows detail of memory usage per class. On the summary or class list, look
for classes with unexpectedly high memory usage, or a large increase in size between
snapshots.

When you enable filters or use the find £ box, the values in the list only include objects
that match the selected criteria.

Kavaspars Tlwiz Kara L S [batea) Sos Dt feptes =)-] Live Imah s Tnatsnew 08 (=1

Svatean. Draedng Solcdineh = 1 B0, Do + 150 400 & 50000 + 4,400 j_.
Zyntem g B - 288 4 -2
SyHEn Gibgaci]] R T E + 80 A (B b LR
Sy Spte] Bl 42 - 4 -
Syt sariral | B - T =
Syatean Windows o, CwviceC oriwod B0 +T 040 & LI# + 1% &
Syuitamn Colaciiors Hanhbsbla dckat]] 51 - n -
Svtem Condapamaee F e pledond £, 3 5 i~ 3 -
Sytean. Coletiong Sk = +2606 & Lr® + U &
Syten Rk Ty 7, Ben +30 & 14 +1 &
Syatemn Draedng = il Z, 7 0 - [-
ShapeP anier Hipsebhaps 2,840 - e -
SvaEwn 3] 555G - 24 -
ShapeePminter RedtanpleShape 260 = =5 =
ShaprPainter TrisngleShape Lm - -
LT Thar] 1,510 - -

Somtemn Obpact 1,B0 |4 150

If you are performing a general check on memory usage, or checking where most
memory is used, it can be useful to start by looking at Live Size or Live Instances.
Click on the column heading to sort the column, and look for classes with unexpectedly
large size or number of instances.Right-click on a class and select :*- Show Class
Reference Explorer to see where instances of the class are being referenced.

If you are looking for a memory leak, it can be useful to begin by looking for unexpected
differences between two snapshots in the Size Diff or Instance Diff columns. Click on
the column heading to sort the column, and then look for classes whose memory usage
or instance count has increased significantly. Use the Comparing snapshots filters to
focus your analysis, depending on the snapshots you are comparing: if you are looking
for objects which exist in both the baseline and the current snapshot, select Only
surviving objects; if you are looking for objects which were created between the two
snapshots, select Only new objects.

e If the class that looks interesting is one you recognize, right-click and select "ﬁ‘
Show Instance List to look for instances of the class.

e If the class that looks interesting is not one you recognize, right-click and select =#
Show Class Reference Explorer to find out where instances of the class are being
referenced.

To find a specific namespace or class, type part of the name in the find box. This can be
useful, for example, if you are checking back on a memory leak you have fixed. In many

© Red Gate Software Ltd 17

cases, we do not recommend starting your investigation by looking for specific classes;
instead, start by looking at the size or instances columns.

We recommend this approach because a lot of the code being executed by your
application is likely to be part of the .NET framework libraries or other third-party
libraries, so you are likely to see leaks in classes which are not your own - even where
your code is the cause of the leak.

The Live Size column shows the total size of instances of the class in the current
snapshot.

The Live Instances column shows the total number of instances of the selected class in
the current snapshot.

The values do not include instances of classes referenced by the selected class.

These values can be good starting points for finding out where most memory is being
used by your application.

To investigate why a class has a large size or high number of instances:

e |ook at instances of the class on the instance list
or.

e investigate whether another class is keeping instances of your class in memory
unexpectedly, on the class reference explorer

When you compare two snapshots, the Size Diff and Instance Diff column show the
differences between the baseline and current snapshots.

An unexpected increase in the size of a class or number of instances may indicate a
memory leak. For example, if you perform an action where you expect new objects to be
cleaned up between the snapshots (such as opening and closing a dialog box), you would
not expect the class to increase in size or number of instances.

There are also cases where an increase in size or number of instances does not indicate a
leak:

e For an application that includes a text editor, the size of the text buffer would be
expected to increase as the user adds more text to a document. In this case, the Size
Diff column for the text buffer class shows an increase in size, but this is not an
indication of a memory leak.

e For an application with a text editor backed by a DOM, the number of nodes of a DOM
would be expected to increase. In this case, the Instance Diff column for the DOM
classes shows an increase, but this is not an indication of a memory leak.

© Red Gate Software Ltd 18

The class reference explorer shows reference relationships between classes, which can
help identify instances which are unexpectedly kept in memory. This can be particularly
useful if your snapshot analysis identifies a class you do not recognize: Use the explorer
to follow chains of references to the class, until you reach a class you recognize which
may be responsible for the memory usage.

When you enable filters, the values on the graph only include objects that match the
selected criteria.

Your selected class is shown at the center of the graph (in black). Classes to the left have
instances which reference instances of the selected class; classes to the right have
instances which are referenced by instances of the selected class.

e The percentage shown on a class indicates the proportion of instances of the selected
class (in the center) that are connected to it by references along that path. This
information can be useful for understanding why instances of your selected class are
in memory: look at the percentages on classes to the left of the selected class for an
overview of what classes are responsible for instances of the selected class being in
memory.

e To find out why your selected class is unexpectedly large, look at the class that is
responsible for most references to the selected class. This is the class at the top-left
of the graph. Click the class to expand the graph, showing classes that reference this
class.

e The graph shows all references between classes, so you may find that as you expand
classes and follow references along a particular path you start to see the same classes

© Red Gate Software Ltd 19

repeatedly in the path. This is a circular reference chain, and you are unlikely to find

o
useful information by continuing to follow it. Instead, click “®mShow instances of
this class on this path to display the instance list for one of the classes on this path,
and then display the object retention graph for an instance, to investigate why the
instance is in memory.

See also

What to look for in the summary ..., 15
What to look for on the class reference explorer 19
What to look for on the object retention graph 24

© Red Gate Software Ltd 20

The instance list shows detail for all instances of a class, which can help identify
instances which are the likely cause of a memory problem.

When you enable filters, the list only includes objects that match the selected criteria.

Mew Object | Vialue Size (bytes) Size with Children (bytes) GC Root Object Distance from GO Rioot
Mo | @ Sgnature - 38 B0 | Mo "
Yies Sgrature 43 Bl Mo I
Mo Signature 43 68 Mo 3
s Sgratre 43 2 Mo 10
s Signature 48] 10
Yies Signature L T Mo 10
e SOnatre 43 68 Mo 10
fies Signature 48 T2 Mo 10
Y5 Signature 43 68 Mo 10
Yes Sgnature 43 7z Mo 10

The instance list is useful for understanding what instances of a class are in memory, and
for identifying objects which are likely to be involved in a memory leak.

Click # in the Value column to find out more about the properties of a specific instance.

& Instance List for SystemEvents O Showing 1 of 1 abjects {0 Fi
Mew Object | Yalue Size (E

@ consoleHandler | M ativetd ethodz+ConHndir E
windowHandle | +0+000811e6
H windowProc M ativetd ethods+wndProc

The New Object column indicates whether the object was created between two
snapshots you are comparing, or whether it existed already in the earlier snapshot. (This
column is only populated when you are comparing two snapshots.)

When you are comparing two snapshots, either Yes or No in the New Object column
may be an indication of leaked objects, depending on when you took your snapshots.

e Yes may indicate a memory leak when you are comparing snapshots and you expect
instances of the selected class to be cleaned up between snapshots. For example, you
take a snapshot before and after opening and closing a dialog box. Objects created by

© Red Gate Software Ltd 21

the action should be cleaned up before you take the second snapshot, so new objects
in the second snapshot are likely to indicate a memory leak.

When you investigate these new objects further, apply the Only new objects filter;
this ensures you are only looking at objects which are new in the second snapshot.

e No may indicate a memory leak when you are comparing snapshots and you expect
instances that exist before the first snapshot to be cleaned up by an action you take
between snapshots. For example, you populate a list with data, and then take a
snapshot before and after clearing the list. Objects created before the first snapshot
should be cleaned up before you take the second snapshot, so old objects in the
second snapshot are likely to indicate a memory leak.

When you investigate these objects further, apply the Only surviving objects filter;
this ensures you are only looking at objects which exist in both snapshots.

The GC Root Object column indicates whether the object is a GC root object. A GC root
can be any storage slot to which the running program has access, such as a local
variable, static variables, or even a CPU register. (Strictly speaking, the object itself is
not the GC root; the storage slot that holds the reference to the object is the GC root.)

When the garbage collector runs it determines which objects are not garbage by walking
the heap, starting at the GC roots. Objects which can be reached by following a chain of
references from a GC root are designated as not garbage, and are not collected.

To find out why an object in the instance list is a GC root, right-click on it and then select

+ Show object retention graph. Information on the graph shows why the object is a
GC root.

GC Handle

. The Forml object is a GC rook because it has been designated a §
/ShﬂpﬁpﬂlﬂtEF.Fﬂ G handle using GCHE!I'H:"E..':'."DEI: }

\ m_Shapes /
v

GC root objects are not usually the source of memory leaks. However, they can be useful
in finding memory leaks because there is always a chain of references between the
leaked object and one or more GC roots. To enable the garbage collector to clean up the
object, you need to break this chain of references by changing your code to remove one
of the "links" in the chain.

The Distance from GC Root column shows the number of references in the chain
between the object and its nearest GC root.

It is likely that shorter, more obvious chains of references between objects and their GC
roots have been broken already. Often objects which are at a greater distance from a GC

© Red Gate Software Ltd 22

root may be involved in a memory leak, because the chain of references from the GC root
to the object is more complex.

© Red Gate Software Ltd 23

What to look for on the object retention graph

The object retention graph shows chains of references between GC roots and your
selected object. Start at your selected object and follow the chains of references up
towards the GC roots, to identify references that are preventing the garbage collector
from collecting your object. When you find an unexpected reference, modify your code to
break the reference, and then profile the application again to check the problem is fixed.

) & rende
ShapePainter.Formil

__mClptoard /

é J Cotrt g s e | A

-

5||rt‘hm£nrrl:igur:l:ion.clinrﬂniigumtinnfﬂﬁ'nmx‘,"
A\ _eamp lebeConfigRecard _.-"I

L 3 f *

System . Configuration.RuntimeConfigurationfecord

this as BaseConfigurationRecord |._sactionRecords

_ ¥

| System . Collections_Hashtable

| bucloets
r ShapePainter.Shapes 1

Y
[(this as ColectionBase).list J System.Collections.Hashtable + budcet]] |
L

System. Configuration. SectionRecord |
_result
_resutRuntimeObject

Sy sbem. Windows.Form s. WindowsFormsSection

-
L]

(this a8 Cor "|;_| =|.-.I'I|:|:"\|:'I‘..:._-: LIS

L

| System . Configuration ConfigurationV alues |

| (this a5 NameDbjectCollectionBase)._enkriesArray |

? ~
¢ m) I System. Colledcions. ArrayList
_ibems —

L

System.Colledions. ArrayList

_fhems

— ¥ . <]

Systern.Object]]

The object you selected is shown at the bottom of the graph (in black); GC root objects

are shown at the top of the graph, with an indication of the reason that the object is a GC
root.

For more information about specific objects on the graph, move the mouse cursor over
the object; details are displayed in a tooltip.

© Red Gate Software Ltd 24

e The object retention graph only shows the shortest chain of references from each GC
root to your selected object. When you break this chain of references, the object may
still be kept in memory by a longer chain of references.

After you have modified your code to break the first chain of references, profile your
application again; the object retention graph updates to show the chain of references
which is now the shortest chain. You will need to modify your code again, to break
this chain of references, and repeat until all the chains of references are broken and
the object is no longer in memory.

e Objects grouped in a box are strongly connected; every object references every other
object in the group (the reference may be direct or indirect). To remove an object
from memory, you do not normally need to break all the references between a GC
root and your object: only one of the references needs to be removed to prevent your
object from being kept in memory.

However, the relationship between strongly connected objects is complex, so in this
case you may need to break more than one reference to prevent your object from
being held in memory. Break the references one at a time, and take new snapshots
each time to check whether your object is still in memory.

e If there is an event handler in the chain of references from a GC root to your object,
look at the objects that directly reference the event handler; these references are
often a good point to break the chain of references to your object.

e If your graph shows an object which seems to not be referenced by anything, it may
be because this object is on the finalizer queue. The graph hides finalizer queue GC
roots by default, because they do not normally indicate a memory problem. To show
these objects on the graph, clear the Hide finalizer queue GC roots option (in the
bar above the graph).

If the graph shows your object is being kept in memory by an object on the finalizer
queue, take another memory snapshot. Taking a snapshot forces the garbage
collector to run, so your object should now be removed from memory.

© Red Gate Software Ltd 25

Using filters to find objects

Use the object filters to focus your memory usage investigation on objects that are more
likely to be of interest.

Select one or more of the filters to show only objects that meet all of the selected criteria.
Other objects are hidden.

The bar above the results area indicates the number of objects affected by the current
filters:

r’ m—— Mm_ Sxicker W gl 241300} = 4 Snapahols b et B snapelwd 3413000 - _

St Anslyab e [ratance drusha o
i weremary i cesim 0 B & | il wmawewm | B D b peterten ash B
Arvmrced nbgect FEere e L Shovire St o 275 chaawa |1 Hiw Dwipiarys | Claasan wabh, o @t 10or2n oot LY
[] Pirved sixjmcie
] ‘thrimciz which 35 roaRs Mismory suaremany soapalee 3015 100 Commparison: of ll'.-fl::llr:;i; :‘| 10) v, snegpshnd
Totmet o sbesies 6 Classes st brgest sine Large sk yrossttan uer
] Kt i iy by by Fearon of: | b ki L
O Foet ot - | v L = [
2 o [- e % []
[T et iy sk e et Frcan B I pntaps 4% |
= T o aam ICLETE . bare L
L . g 1% S
[Wt i st by b 5 s
ak: L bawies willy ssand arid sew s Lawpes] grirad by irfanwe s
o Puralie:
M s mubi ee] 2% (I Trangezrape T [
Faualion (e
= % [v =% I
= % | E— patham 1% L]
7] Rafarmrcu by an ratarce o . . iy —w e r
T 1B [[
L] Fervar rafwemncad by am instancs of: Lsige abject besp detsds Lo bt e dhanges
Freesoas o0 ol HET hegss 16812, 684 e e T LR
* e S S Lt It ki 1EALS B avein g el e T - 195
0 O—— M. s of reey object |sppre. | 0640 D21 Crangs in madrem s o, o
_'F Ak Fe [sl] L f | Tresswery depleer an overses of senory Uesge. What fo ok Por oo the sy [=]

Suggestions for using filters

Filters alone cannot identify memory problems, but they can help narrow down your
search space. The following notes suggest filters that can be useful in some conditions.

Filters which can help find a memory leak

The following filters can be useful in finding a memory leak:
Disposed objects which are still in memory
Kept in memory only by event handlers
Kept in memory only by disposed objects
Only zombie objects (in the Comparing snapshots filters)

© Red Gate Software Ltd 26

The following filters can be particularly useful when you want to focus on a specific part of
an application, or exclude a specific part of an application:

Objects on large object / Gen 0 / Gen 1 / Gen 2 heap
Kept in memory only by objects from namespace

Never referenced by an instance of class

You can also focus on a specific part of an application by using the Process selection
filter.

See Strategies for memory profiling for examples of how to incorporate filtering in your
memory profiling workflow.

When you apply multiple filters, only objects which match all the filters are shown (i.e.
there is an AND relationship between filters).

For example, select the following filters:
e Disposed objects which are still in memory

e Objects on Gen 1 heap

Objects are only shown if Dispose() has been called on them and they are on the Gen 1
heap.

Some of the filters enable you to narrow down your search for memory problems by
concentrating on certain types of relationships between objects.

Objects may be in memory because another object references them; the object is on at
least one of the chains of references between the selected object and a GC root.

Example: objects referenced by Object 1

In this example all objects except Object 2 are referenced by Object 1, either directly or
indirectly. Note that the filter selection includes the specified object, Object 1.

© Red Gate Software Ltd 27

Some filters show objects where the selected object is in all chains of references between
the objects and a GC root - that is, objects are kept in memory only by the selected
object.

Example: objects kept in memory by Object 1 (note that the filter includes the selected
object, Object 1)

In this example, only four objects are kept in memory only by Object 1. Object 1 is not in
all the chains of references between the remaining objects and their GC roots; for
example, Object 4 has another GC root which references it via Object 2. Note that the
filter selection includes the specified object, Object 1.

See also

Using filters to find objects......ccvviiiiiiiii e 26

© Red Gate Software Ltd 28

Object filters enable you to focus your analysis on specific types of object or specific parts
of the application. This topic describes the available filters, and suggests situations in
which they might be useful.

Show only objects on which Dispose() has been called, but which cannot be garbage-
collected because a reference to the object still exists in memory.

Disposed objects should not normally be kept in memory, so this filter can be a good
indicator of a memory leak.

When you have identified a disposed object with this filter, display it on the object
retention graph, then follow the chains of references to identify the objects keeping the
disposed object in memory.

This filter is not available when you are profiling a .NET 1.1 application.

Show only objects in the selected area of memory.

This filter is not available when you are profiling a .NET 1.1 application.

Show only objects on the finalizer queue on which Dispose() should be called.

Show only objects where all chains of references between the object and a GC root go
through an event handler.

Examples: objects kept in memory only by event handlers

© Red Gate Software Ltd 29

(note that the event handler is included in the objects shown)

GC Root GC Root
¥ > v
bject 1 Object 2 Object 3
< v
(" EventHandler | Object 5
> < <
[Object 6 Object 7 Object 8

I e ot ~
Object9 | [Object 10 Object 11 Object 12

k4
[EventHandler] [Object 2]

e F
- " |]

[Object 5] [ﬂb]a:tﬁ] [Object 7] [Object 8]

Event handlers should not normally be the only reason an object is kept in memory, so
this filter can help identify a memory leak.

When you have identified an object that is kept in memory only by an event handler,
display it on the object retention graph, and follow the chain of references from the
object to the event handler; it is likely that the cause of the problem is an object close to
the event handler.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Show:
e disposed objects
and

e objects where all chains of references between the object and a GC root go through a
disposed object

Examples: objects kept in memory only by disposed objects

© Red Gate Software Ltd 30

(note that the disposed object is included in the objects shown)

GC Root GC Root
- > v
Object 1 Object 2 Object 3
D v
{ Disposed Object | Object 5

> 7§
(obm_J
Object 9 Object 10 Object 11 Object 12
_J =

[Disposed Dh]ecl: [Dbjectz

’_‘* ﬂh_]ect 4

I‘.]I:l_]EEI:E] [Dh]ectﬁ Dh]ect? J [ﬂbjectﬂ J

vl &
2

S

E
+l

Disposed objects should not normally be kept in memory, so this filter can help identify a
memory leak.

When you have identified an object that is kept in memory only by a disposed object,
display it on the object retention graph, and follow the chains of references to identify the
objects keeping the selected object in memory.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

This filter is not available when you are profiling a .NET 1.1 application.

Show objects in your current snapshot, based on the comparison with your baseline
shapshot.

Only new objects
Show only objects created between the baseline snapshot and the current snapshot.

Only surviving objects
Show only objects that remain in memory in both the baseline snapshot and the
current snapshot.

Only zombie objects

Show only objects that showed indications in the baseline snapshot that they would
not survive in the current snapshot, but which are still in memory in the current
snapshot.

This includes objects with the following characteristics:

© Red Gate Software Ltd 31

e Objects on which Dispose() has been called in the baseline snapshot, but which
are still in memory in the current snapshot because garbage collection was
prevented for some reason

e Objects on the finalizer queue in the baseline snapshot (this includes objects still
on the finalizer queue in the current snapshot and objects which are no longer on
the finalizer queue in the current snapshot)

These objects should not normally still be in memory in the current snapshot, so they can
be useful for identifying a memory problem.

Show only objects marked to not be moved in memory. An increasing number of these
objects could indicate that the objects are not being unpinned for some reason.

Large numbers of pinned objects can cause performance problems because of the way
the garbage collector handles these objects.

Hide GC root objects or show only GC root objects.

If you are investigating a memory leak, it may be useful to hide GC root objects, because
they are not generally the source of leaks.

If you are performing a general check on memory usage, it may be useful to show only
GC root objects. Show the class list to see details of classes with instances which are GC
roots, and then use the class reference explorer to investigate the relationships between
these classes and other classes with instances in memory.

Tip: To look for specific types of GC roots, combine this filter with the Kept in memory
only by GC roots of type filter.

Show:
e instances of the specified class
and

e objects where instances of the specified class exist in all chains of references between
the object and a GC root

Example: objects kept in memory only by the class that Object 4 is an instance of

© Red Gate Software Ltd 32

(note that Object 4 - which is an instance of the specified class - is included in the objects
shown)

Object 1 Object 2 Object 3
[object 4 | Object 5
[Object 6 Object 7 Object 8

e e
(Object9 | [Object 10 J Object 11 Object 12 |

Example: objects kept in memory only by the class that Object 1 is an instance of

DI:l_]E::I:E] [Db_]ar:l:ﬁ Db_]El:l:?] [_Dbjer:tS]

This filter shows objects where instances of the specified class exist in all chains of
references between the object and a GC root. To show objects where instances of the
specified class exist in at least one chain of references (but not necessarily in all chains of

references) between the object and a GC root, use the Referenced by instances of
class filter.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Show:
e objects from the specified namespace
and

e objects where instances of classes from the specified hamespace exist in all chains of
references between the object and a GC root

Example: objects kept in memory only by a class from the namespace that Object 4 is an
instance of

(note that Object 4 - which is an instance of the a class in the specified namespace - is
included in the objects shown)

Object 1 Object 2 Object 3
. e, v
(‘objects | Object 5
> . |
[Object 6 Object 7 Object 8
e e N 14 >
[Object 9 J [Object 10 J Object 11 Object 12 |

© Red Gate Software Ltd 33

Example: object kept in memory only by a class from the namespace that Object 1 is an
instance of

When you select multiple namespaces for this filter, objects are shown if they are
instances of classes in any of the namespaces.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Show objects with GC roots of the specified types (includes objects which are GC roots).

When you select more than one type of GC root, objects are shown if they have a GC root
which is any of the selected types.

Tip: To look for specific types of GC roots, combine this filter with the Objects which
are GC roots filter.

Show only objects which are referenced by one or more instances of the specified class.
The reference may be direct or indirect.

Example: objects referenced by the class that Object 4 is an instance of

(note that Object 4 - which is an instance of the specified class - is included in the objects
shown)

Object 6 Object 8

— —
[objecta | ll)hja‘llll] [Dlzjeou \'DlzjatuJ

© Red Gate Software Ltd 34

Example: objects referenced by the class that Object 1 is an instance of

[Ohject 5] [Cllbjectﬁ] [Object 7] [Ohject 8]

When you select multiple classes for this filter, objects are only shown if they are
referenced by all of the selected classes.

This filter shows objects where instances of the specified class exist in at least one chain
of references between the object and a GC root. To show objects where instances of the
specified class exist in all chains of references between the object and a GC root, use the
Kept in memory only by instances of class filter.

Show only objects which are never referenced by an instance of the specified class. This
includes direct and indirect references.

Example:objects never referenced by the class that Object 4 is an instance of

{6CRoot { 6C Root

P x| > -
{Kou,eun) [objmz) ;‘on,maJ
X < — v
Object 4 | Object s]
¥ > D
Object 6 Object 7 | Objects
-+ < | 4 >

Dbject 9 Object 10 Object 11 Object 12

When you select multiple classes for this filter, objects are only shown if they are not
referenced by any of the selected classes.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Some examples of when you might want to use this filter:

e You know that all the data in your application should be referenced by a single main
class. Apply the Never referenced by an instance of class filter to remove objects
referenced by the main class from the results.

e Your application performs caching (for example, web applications that cache the query
results). Cached objects are deliberately kept in memory for a period of time. Apply
the Never referenced by an instance of class filter to exclude objects referenced
by a cache class (for example, System.Web.Caching.Cache, for ASP.NET applications).

© Red Gate Software Ltd 35

