ANTS Memory Profiler 6.0
August 2010

Note: these pages apply to a version of
this product that is not the current released version.

For the latest support documentation, please see
http://documentation.red-gate.com

redgate

ingeniously simple tools

http://documentation.red-gate.com/

(1=] o Yo =] =] o (=T PP 3

Types of MemMOrY Problam ... e 4
Understanding managed memory 1€aKS ... e 5
Understanding unmanaged memory [€aKsc.viiiiiii i 6
Understanding large object heap fragmentationccooiiiiiiiii i 7
Strategies for memory profilingc.iciiiiii e 8
Checking for memory Problems ..o e 9
Finding out what is using MOSt MEMONY ...viiiiii i 10
Finding and fixXing @ MemoOry 1€aK......cvie i e eens 11
Checking that @ memory leak is fiXedcciiiiiiiiiii e 15
Finding and fixing large object heap fragmentationc.ccoooiiiiiiiiiiiiiii s 16
Setting up the Profiler .. e 18
Working with application settingscciiiiiiiiiii 20
Profiling Shar@POINt ... e 21
Attaching to @ runNiNgG .NET 4 PrOCESS .uiiiiiitiiiitiite ittt it it sat et sate et aateaateaaneaas 28
Setting up perforManCe COUNEEIS ..t e aae s 30
Working with the timeline ... e 33
Working with ANTS Memory Profiler ..o e 34
1. SNapshot @NalysSis v e 35
B O F= 11T o T= 2] 1= 37
3. INSEANCE @NAlY SIS «itiiiiiii i e 42
Using filters to find ObJeCES ...iiir i e 48
List Of ObJeCt filters .o e 51
LYo 1=To TR o U)o o =1 = PR 58
ACKNOWIEAGEMENTS ..t 59

© Red Gate Software Ltd 2

ANTS Memory Profiler enables you to profile memory usage of applications written in any
of the languages available for the .NET Framework, including Visual Basic .NET, C#, and
Managed C++. This is useful, for example, to improve memory usage by identifying the
objects and classes that use most memory, and objects that remain live the longest.

You can use ANTS Memory Profiler to profile .NET desktop applications, ASP.NET web
applications hosted in Internet Information Services (IIS) or the ASP.NET Development
Server, .NET Windows services, COM+ server applications, Silverlight 4 or later
applications, and XBAPs. In addition, you can profile applications that host the .NET
Runtime, for example Visual Studio .NET plug-ins.

You can use ANTS Memory Profiler with the following versions of the .NET Framework:
e 1.1 (32-bit applications only)

e 2.0 (32-bit or 64-bit applications)

e 3.0 (32-bit or 64-bit applications)

e 3.5 (32-bit or 64-bit applications)

e 4.0 (32-bit or 64-bit applications)

Some filters and functionality are not available when profiling .NET 1.1 applications, see
the List of object filters for more details.

The exact procedure you use to find your memory problem depends on the type of
problem you think you have. In all cases, there are three general steps:

1. Set up (page 18) the program that you want to profile.
2. Take one or more memory snapshots.

3. Analyze the profiling results.

© Red Gate Software Ltd 3

It is possible to categorize most types of memory problem you encounter; this may help
you start to locate and resolve your problem.

e Managed memory leaks
The typical symptom of a memory leak is that the performance degrades while the
program runs but this recovers on restart and then degrades again. The amount of
bytes in the .NET heap increases. Read more...

e Unmanaged object leaks
The performance degrades while the program runs but this recovers on restart and
then degrades again. The number of private bytes (the amount of real and paged
memory requested by the program) in use often increases at a greater rate than the
number of bytes in the .NET heap. Read more...

e Fragmentation of the large object heap
The main symptom of fragmentation is that OutOfMemoryExceptions are thrown even
though there is sufficient space on the .NET heap. Read more...

e Large RAM footprint
Some programs need to use a lot of memory. There is little specific advice that can be
given about this, since the best approach to reducing the amount of memory used will
depend on your program’s requirements. Using a profiler may give you suggestions
for where to optimize code by showing which parts of your program are using the
most memory.

e Identify and prevent memory leaks in managed code (http://msdn.microsoft.com/en-
gb/magazine/cc163491.aspx)

o Video tutorial (http://www.red-
gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

)

e Garbage Collection: Automatic Memory Management in the Microsoft .NET Framework
(http://msdn.microsoft.com/en-us/magazine/bb985010.aspx)

e Memory Management in .NET (http://www.c-
sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM
/MemoryManagementInNet.aspx)

© Red Gate Software Ltd 4

http://msdn.microsoft.com/en-gb/magazine/cc163491.aspx
http://msdn.microsoft.com/en-gb/magazine/cc163491.aspx
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://msdn.microsoft.com/en-us/magazine/bb985010.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx

If you leave objects referenced when they are no longer needed, the amount of memory
used will increase. The .NET Garbage Collector (GC) can only free memory if an object
(or an object’s ancestor) has no reference pointing to it. Therefore, if an object which is
not needed is still referenced, it will not be freed. References may be made from one
object to another (through a member variable), from global or static variables, or from
local variables in currently running methods.

A common example of memory leaks caused by this effect might be when a dialog box is
displayed and a reference is made to it from another part of the user interface. If this
reference is not destroyed, the dialog box and its contents will remain in memory even
after it has been closed.

The typical symptom of a memory leak is that the performance degrades while the
program runs but the amount of memory used recovers on restart and then degrades
again.

© Red Gate Software Ltd 5

Managed .NET code may interoperate with unmanaged code when some COM objects or
C-style DLLs are invoked.

Leaks caused by unmanaged objects are more complex to identify, because ANTS
Memory Profiler cannot provide detailed information about unmanaged usage. You can
compare the different performance counters provided by ANTS Memory Profiler, however,
to give some ideas about where to look for these leaks.

The main indication of an unmanaged memory leak is when the number of private bytes
(the amount of real and paged memory requested by the program) increases while the
number of bytes in the .NET heap does not grow as quickly. You may be able to find the
source of the problem by looking for .NET objects whose instance count is increasing, or
by looking for objects on the finalizer queue that have not been disposed.

e Eric Smith has written a blog post describing his approach to finding an unmanaged
leak
http://esmithy.net/2007/06/25/finding-unmanaged-memory-leaks/
(http://esmithy.net/2007/06/25/finding-unmanaged-memory-leaks/)

© Red Gate Software Ltd 6

http://esmithy.net/2007/06/25/finding-unmanaged-memory-leaks/

Although it is not technically a memory leak, fragmentation of the Large Object Heap
(LOH) can create similar effects. The LOH is used to store objects exceeding 85kB (most
commonly arrays of objects or long strings). The .NET runtime will only run a Garbage
Collection (GC) on the LOH during a full Garbage Collection (that is, when a Generation 2
collection takes place on the Small Object Heap). After a collection, the LOH is never
compacted because this would seriously reduce the performance of your program.

This means that if an object on the LOH is removed during a GC, free space will exist on
the LOH which will be the same size as the deleted object. The problem is that if you try
to allocate a new object which is larger than the deleted object (even by one byte), the
CLR will add it to the end of the LOH by making the LOH larger if necessary. Eventually,
the LOH will become too large and an OutOfMemoryException is thrown, even though
there may be plenty of free space within the heap.

e The Dangers of the Large Object Heap
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-
heap/ (http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-
object-heap/)

e The MSDN article ‘Large Object Heap Uncovered’
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
(http://msdn.microsoft.com/en-us/magazine/cc534993.aspx)

e Understanding the Garbage Collector
http://www.simple-talk.com/dotnet/.net-framework/understanding-garbage-
collection-in-.net/ (http://www.simple-talk.com/dotnet/.net-
framework/understanding-garbage-collection-in-.net/)

© Red Gate Software Ltd 7

http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://www.simple-talk.com/dotnet/.net-framework/understanding-garbage-collection-in-.net/
http://www.simple-talk.com/dotnet/.net-framework/understanding-garbage-collection-in-.net/

This topic contains guidelines and recommendations about common memory profiling
scenarios, including some heuristics about memory usage patterns that might indicate a
memory problem. Of course, every application is different, so these guidelines only

outline strategies for memory profiling; to apply these strategies you will need a good
understanding of your application.

© Red Gate Software Ltd 8

The following steps outline how to carry out a systematic check of memory usage, to
determine whether there are any memory problems.

1. Before you start, work out a plan for what functionality or states you want to check.
You will need to be methodical about taking snapshots at the appropriate times to
check these states, and you will need to have a good understanding of the expected
memory usage - so you can identify unexpected memory usage.

2. Start ANTS Memory Profiler and start profiling your application. Take a snapshot of
the application in each of the states you want to compare. Depending on what you are
trying to discover, it may be sufficient to take a snapshot before and after performing
actions, or you may need to take additional snapshots during use, so that you can
analyze memory usage throughout.

3. It may help with your analysis if you change the name of the snapshots so that they
are easier to recognize.

4. For each state that you want to check on, select a baseline and current snapshot in
the Snapshots bar. Alternatively, you can check on memory usage in a single state in
isolation: from the Current list, select the snapshot you are interested in; from the
Baseline list, select No baseline.

¢+ Look at each snapshot to understand where memory is being used in each state.
Find out more about how to identify what is using most memory

¢+ Compare pairs of snapshots to check for memory leaks.
Read suggested strategies for finding memory leaks

¢+ Use the object filters to check for common indicators of memory leaks.
Find out more about using filters

+ Look for fragmentation problems on the large object heap

Read tips on identifying fragmentation problems on the large object heap

© Red Gate Software Ltd 9

The following steps outline how to find out what classes are using most memory in your
application.

1. Start ANTS Memory Profiler and start profiling your application. Get the application
into the state in which you are interested in its memory, and then take a memory
snapshot.

2. On the class list, look for the largest classes, or the classes with the highest number
of instances. For this analysis, you are going to explore memory usage by following
references to a class, so it is not important if you do not recognize these classes.

3. Select a class and display the class reference explorer. Use the explorer to look at
what is keeping your selected class in memory.

Start by looking at the class with the highest number of direct references to objects in
your selected class (this is the class at the top of the graph, to the left of your
selected class). Click on the class to show classes that refer to it, and then continue to
follow the chain of references to understand what is keeping the instances of your
selected class in memory.

For example, System.String is often the largest class; using the class reference
explorer you can find out what is keeping strings in memory.

© Red Gate Software Ltd 10

The following examples outline some approaches to finding a memory leak for some
common scenarios.

We recommend that you make a note of the steps you take when you are looking for a
memory leak, so that you can perform the same actions later to check that you have
fixed the leak.

The snapshots and analysis you perform depend on the functionality of your application.

This scenario is the most straightforward, so it is recommended as the preferred way of
finding a memory leak.

1. Start ANTS Memory Profiler and start profiling your application. Get the application
into the state in which you are interested in its memory.

2. Take two snapshots, so you can compare memory usage before and after the action
that you believe leaks memory:

a. Take the first snapshot.

b. Perform an action that you believe causes a leak; then perform the actions that
should clean up any objects created by the first action.

For example, open a dialog box, change some settings, and then close the dialog
box.

c. Take a second snapshot.

Objects created by the action should be cleaned up before the second snapshot, so
any new objects created in the second snapshot are likely to indicate a memory leak.

3. Apply the Only new objects filter to show only the classes with new instances in the
second snapshot.

4. On the class list, look for classes with a high positive value in the Instance Diff or
Size Diff column. These values indicate the classes responsible for increased memory
usage in your second snapshot, so they are good indicators of the likely cause of a
memory leak. At this stage, we recommend that you look at all classes (not just the
classes you recognize): although your own classes may be responsible for the
memory leak, the symptoms of the leak may be increased usage in other classes,
such as System.String.

5. Look at instances of classes with unexpectedly high growth in size or number of
instances:

+ If the class that looks interesting is one you recognize, look at instances on the
instance list.

+ If the class that looks interesting is not one you recognize, use the class reference
explorer to navigate along the chain of references to objects in this class, until you
reach a class you recognize. Next, look at instances of that class on the instance
list.

© Red Gate Software Ltd 11

6. On the instance list, look for objects with a high value in the Distance from GC Root
column.

Often, leaked objects are found at a greater distance from their nearest GC root
because all the obvious, shorter chains of reference from a GC root to an object have
been broken already.

7. Show the object retention graph for the object that looks interesting. Follow chains of
references up the graph to identify objects keeping your object in memory
unexpectedly.

8. When you find an unexpected reference, modify your code to break the reference, and
then profile the application again to check that the problem is fixed.

1. Start ANTS Memory Profiler and start profiling your application. Get the application
into the state in which you are interested in its memory.

2. Take two snapshots, so you can compare memory usage before and after the action
that you believe leaks memory:

a. Perform the action that you believe causes a leak. For example, populate a list
with data.

b. Take the first snapshot during or immediately after this action - that is, before any
clean-up happens.

c. Perform the action that should clean up the objects created by the first action. For
example, clear the data from your list.

d. Take a second snapshot.

Objects should be cleaned up between snapshots, so any remaining objects were
probably created by the first action.

3. Apply the Only surviving objects filter to show only classes that exist in both
snapshots.

4. On the class list, look for classes with a high value in the Live Instances or Live
Size column. These values indicate the classes responsible for memory usage in your
snapshots. At this stage, we recommend that you look at all classes (not just the
classes you recognize): although your own classes may be responsible for the
memory leak, the symptoms of the leak may be increased usage in other classes,
such as System.String.

5. Look at instances of the class with unexpectedly high size or number of instances:

+ If the class that looks interesting is one you recognize, look at instances on the
instance list.

+ If the class that looks interesting is not one you recognize, use the class reference
explorer to navigate along the chain of references to objects in this class, until you
reach a class you recognize. Next, look at instances of that class on the instance
list.

6. On the instance list, look for objects with a high value in the Distance from GC Root
column. Often, leaked objects are found at a greater distance from their nearest GC

© Red Gate Software Ltd 12

root because all the obvious, shorter chains of reference from a GC root to an object
have been broken already.

Show the object retention graph for the object that looks interesting. Follow chains of
references up the graph to identify objects keeping your object in memory
unexpectedly.

When you find an unexpected reference, modify your code to break the reference, and
then profile the application again to check the problem is fixed.

This way of finding a memory leak is recommended:

if you are not sure what functionality or actions are causing the memory leak

for applications where you expect memory to be constant, but instead memory usage
increases slowly

for applications that do not have functionality that you can manually execute and then
clean up

Start ANTS Memory Profiler and start profiling your application.

Run your application and monitor memory usage on the timeline. When memory
usage starts to increase, take several snapshots (the frequency and number of
snapshots you need to take depends on your application and how rapidly memory
increases).

Select two snapshots to compare.

If there are classes that you expect to be large or increasing in size, apply the Never
referenced by an instance of class/interface filter to remove these classes from
the results.

On the class list, look for classes with a high value in the Size Diff column. This value
indicates the growing classes, so it is a good indicator of a memory leak. At this
stage, we recommend that you look at all classes (not just the classes you recognize):
although your own classes may be responsible for the memory leak, the symptoms of
the leak may be increased usage in other classes, such as System.String.

Look at instances of the class with the largest difference in size between snapshots:

+ If the class that looks interesting is one you recognize, look at instances on the
instance list.

+ If the class that looks interesting is not one you recognize, use the class reference
explorer to navigate along the chain of references to objects in this class, until you
reach a class you recognize. Next, look at instances of that class on the instance
list.

On the instance list, apply the Only surviving objects filter to show only the classes
that exist in both snapshots, and then look for high values in the Live Size column.
This identifies the largest objects, which have stayed in memory for longest, so may
indicate the cause of a leak.

© Red Gate Software Ltd 13

8. Show the object retention graph for the largest object that should not be in memory.
Follow chains of references up the graph to identify objects keeping your object in
memory unexpectedly.

9. When you find an unexpected reference, modify your code to break the reference, and
then profile the application again to check the problem is fixed.

© Red Gate Software Ltd 14

The following steps outline how to check that a memory leak you previously identified is
now fixed:

1. Repeat the steps you used to find the memory leak. If you are looking for a particular
class or object, it may be useful to use the £ find box to locate the class or object
you are interested in.

2. If you have fixed the leak, the objects should not be in memory.

If an unexpected instance does seem to still be in memory, display the object on the
object retention graph, and check whether it is on the finalizer queue (clear the Hide
finalizer queue GC roots option on the bar above the graph). If your object is on
the finalizer queue, take another snapshot and check again: the object may be
removed when the garbage collector runs.

© Red Gate Software Ltd 15

The large object heap charts show an overview of memory availability for the large object
heap.

e Free space on all .NET heaps shows the total amount of memory reserved for .NET
but not currently used.

e Largest free block shows the size of the largest block of unused memory that is
currently reserved for .NET.

e Makx. size of new object shows an estimate of the size of the largest object that can
be allocated. This value is always at least the size of the largest free block, and may
be larger where it is possible to extend the large object heap by reserving more
memory.

Note: This information is not available when you profile a .NET 1.1 application.

CLR Inside Out: Large object heap uncovered
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
(http://msdn.microsoft.com/en-us/magazine/cc534993.aspx)

Dangers of the large object heap
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-
heap/ (http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-
object-heap/)

The following states can indicate fragmentation problems:

+ The Largest free block size is small, but the Free space on all .NET heaps size
is large. Although there is plenty of unused memory, the blocks of contiguous
unused memory are small, so there may be a danger of running out of memory
because the memory is not used efficiently.

+ The Max. size of new object size is small, but the Free space on all .NET
heaps size is large. Although there is plenty of unused memory, it may not be
possible to allocate memory for new large objects, because available contiguous
memory slots are small and it is not possible to allocate more memory to increase
the size of the large object heap.

¢+ When Max. size of new object is smaller than the amount of memory that your
application tries to allocate for a new object, the application will fail with an
OutOfMemoryException.

To investigate objects on the large object heap further, apply the Objects on the large
object heap filter. This can be useful, for example, to find out which objects are
currently in memory, and why they are in memory.

© Red Gate Software Ltd 16

http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/

The best approach to use to solve fragmentation problems will depend on the exact
nature of your program:

e Split arrays into smaller units so that they remain below 85kB (and so are never
allocated on the LOH).

e Alternatively, you can allocate the largest and longest-living objects first (if your
objects are files which are queued for processing, for example).

e In some cases, it may be that periodically stopping and restarting the program is the
only option.

© Red Gate Software Ltd 17

To profile an application, you must first set up a profiling session. A session specifies:
e The application type, location, and options for the application you want to profile.

e The profiling mode, which determines the level of detail gathered by the profiler while
your application is running.

e The method used to calculate timing values (CPU time or wall-clock time).

e The performance counters to display on the timeline.

When you start ANTS Memory Profiler, the ANTS Memory Profiler Settings dialog box
is automatically displayed; if ANTS Memory Profiler is already running, click New
Profiling Session on the File menu.

The Application Settings tab displays the settings for the last profiling session you ran.
The settings available depend on the selected application type, and may differ from those
illustrated above.

The Charting Options tab enables you to choose which performance counter values to
display on the timeline for the new profiling session.

1. On the ANTS Memory Profiler Settings dialog box, complete the details on the
Application Settings tab.

2. Choose which performance counters to monitor during profiling, using the Charting
Options tab.

3. Click Start Profiling

The timeline is displayed at the top of the main ANTS Memory Profiler window, and
the application you want to profile is automatically started. Status text at the bottom-
left of the main window indicates what ANTS Memory Profiler is doing during the
profiling session.

The timeline starts displaying performance-counter data and events in near-real time.
There may be a slight delay between starting a profiling session and seeing the first
performance-counter data appear on the timeline.

4. To display profiling results, do one of the following:
+ Drag a region on the timeline.

Profiling data is summarized and displayed for the selected time period only. Your
application will continue running and profiling will continue.

+ Click Stop Profiling.

Your application will be closed. Profiling data is summarized and displayed for the
entire profiling period.

+ Close your application.

Profiling data is summarized and displayed for the entire profiling period.

© Red Gate Software Ltd 18

You can continue working with the timeline to locate periods of interest during the
execution of your application, and to display the associated profiling results.

Once you have displayed some profiling data, you can view and analyze it. For more
information about the different ways you can do this, see Understanding the profiling
results.

© Red Gate Software Ltd

19

When you start ANTS Memory Profiler, or when you start a new profiling session, the
ANTS Memory Profiler Settings dialog box is displayed.

On the Application settings tab, select the type of application you want to profile from
the Choose application type to profile list. The settings available change depending on
your selection:

.NET executable

ASP.NET web application (hosted in IIS or web development server)
Note that special requirements apply to SharePoint.

Silverlight 4 browser application

Windows service

COM+ server

XBAP (XAML Browser Application)

Attach to a .NET 4 process

Use the Charting options tab to choose which performance counters you would like to
record. See Setting up performance counters for more information.

© Red Gate Software Ltd 20

ANTS Memory Profiler can profile managed code that runs on a Microsoft SharePoint
server because Microsoft SharePoint 2007 is implemented as an ASP .NET web
application.

Most users find that profiling a SharePoint server 'just works'. If you encounter
difficulties, the most likely cause is that ANTS Memory Profiler cannot read from the
directory which SharePoint is writing data to. To fix this:

1. Create a temporary directory

2. If you are not on a sensitive system, allow full read/write access to this temporary
directory to all users. If you are on a sensitive system, ensuring that the local system
account has read/write access should suffice.

3. Use Control Panel to add a new environment variable. The variable must be called
RGIISTEMP and the value is the path to the temporary directory you just created.

For more information, see Chris Allen's blog post, 'Profiling SharePoint with ANTS
Performance Profiler 5.2 (http://www.simple-talk.com/dotnet/.net-tools/profiling-
sharepoint-with-ants-performance-profiler-5.2/)' (The information in this post is also valid
for ANTS Memory Profiler)

The instructions above will work for the majority of people but the security features in
ASP.NET may cause problems on some systems. In that case, follow the instructions
below:

Before you start setting up a SharePoint 2007 site for profiling, you must know:
e the URL for the site collection

e the TCP port it runs on

e the name of the primary site collection administrator

e the primary site collection administrator's password

for the site collection which you are profiling.

To find the name of the primary site collection administrator:

1. Open the SharePoint Central Administration website using the Start menu item.
2. Click the Application Management tab.

3. Under SharePoint Site Management, click Site Collection Administrators.
4

Select the name of the site collection hosting your web part from the dropdown list.

© Red Gate Software Ltd 21

http://www.simple-talk.com/dotnet/.net-tools/profiling-sharepoint-with-ants-performance-profiler-5.2/
http://www.simple-talk.com/dotnet/.net-tools/profiling-sharepoint-with-ants-performance-profiler-5.2/

5. Make a note of the account set in the Primary Site Collection Administrator box.

Hion Walcone ANTITSHAREROTM admrsitrastor = | Hy Ste

al Administration

Mylnka = | @ 2=

ol

Canbral Adraniitr atiss > Asplicabion Managamant > Sibe Colaction Owedis

Site Collection Administrators

derd

L Ehi g b v e chingye Hha prisnary and secondary site collection adninistratons For @ sls collsction. &4 te collsction adminstrators, e usen
auata o subo-delstion rotioss. snd kaves Full coniral peer ol conbet in e sibe collection

Site Collection St Colection, | hibbpey Fantssharepaint 1 34
Sabact & Sia Colection

& Frimary Site Collection Admsnistrabor il collaction ssiministrator;
1 T prwary she colischon sdmnistrstor = deolaysd. Type 8 user nama, and BKTESHARER O INT krian.danahus
= then chck DI by v Hhe change

1 Sevondary Site Collection Adminstrator Secoralary dibe collection adnirsinstor
o smcorelary e colachon admrailralor m o opfonad ertry for & Wb e
nllection. Tha secondary she collschion sdminitrstor s deplyyed, Typs & ussr
= sl bbum, ok, TM o #oma o s, e

Grant permissions

TR Y

The primary site collection administrator must have permission to launch an IIS 6 worker

process. To grant this permission:
1. Open Administrative Tools then open Local Security Policy.
2. Under Local Policies, click User Rights Assignment.

3. Double-click Act as part of the operating system and add the primary site
collection administrator's account.

'|.- Local Security Seftings _-_ln]jl
Ble jcton ¥ew pep
&= | L@ X FB @ E
> . ﬁ : | Securey Swing | B
l Accoint Pokces bt
= 178 Local Pobdes) ’::::::::.‘m Act a5 part of the operating system Propesties 1k
e) it Pokcy [l mamory quotas For & procmis LOE Gy Sating i Setling
i1 Ll Righks Asigret EJidow log on bocaly e e | he !
B E]:?.tp,-r::-s mhmwr,_@kr.. ik A a5 pat of The openslng Fpsten
e L~ 8)tack Ly Flms aed et ores "
P Seftmene B8 pass traverss chedarg Eve

& B P Security Polcins on Lol Comgatar

ANTESHAREPCOINT b an. donahue

EEJoeny bog on localy

BE)Deny bog on thicugh Terminal Ser...
BE)Enable computer and user scoon....
[BE)Force shutdossn From a remcte sy...
BEGener e secity sudts

B rnper st & ok alber saktean...
'aﬂ]lm-uu schinchuler pricrily

¥ e wed i deicn dirbenrs
mﬂhmﬂﬂm?

;m.wmu & habch jsh

:ﬂk@umu 8 servics

:m'ﬂmmq.dquﬂ securiy log

) Modéy Frmears srvmprmend v ses

FEEAZ ETEFGE B

Mm o sk

Eort |
.

4. Double-click Impersonate a client after authentication and add the primary site

collection administrator's account.

© Red Gate Software Ltd

22

5. Open a command prompt and run
gpupdate /force

to enforce the new settings.
Open Administrative Tools and go to Computer Management.
Under Local Users and Groups, open Users.

Double-click the primary site collection administrator's account and open the Member
Of tab.

9. Add the Administrators group.

=101.x]
= Ble acion View Window Help TS|
&= A@E XFR @3 |
IS Comguter Management (Local) Name Full Name Description

=1l Srstem Todls

> 2l x

-] Event Viewer)

[Shared Folders L 5 Remote contral | Teimnal Services Piofle | Digin

(=) Local Users and Groups £ General bemiber Of | Fiofle | Envionment | Sessions
I Users [
£ Groups . Member of:

[+ @i Performance Logs and Alert:] Admireshrators

) Device Manager | Bissits

=1 Starage EEI

B Removable Storage 1
Disk Defragmenter
Disk Mansgement

#- [Services and Applications

The ANTS Memory Profiler 6.0 Service must use the primary site collection
administrator's account when it starts. To configure this:

1. Open Administrative Tools then open Services.

2. Double-click the ANTS Memory Profiler 6.0 Service.
3. Click the Log On tab.
4

Select This Account and enter the primary site collection administrator's username
and password.

5. Click OK.

© Red Gate Software Ltd 23

6. If the status of ANTS Memory Profiler 6.0 Service is Started, right-click the service
and click Restart.

Puservices B =101 x|
Fe Acton Wew teb |
= || AR 2E > u i w |
Services (Local)

ANTS Memory Profiler 4 Geneis LogOn | Recovey | Dependencies |

Ztop the: servioe Lo on ag
Bestart the sarvice

™ Local System sccount
Diescriptian: ™ 2o senvice lo irfesact with desklop

Provides ssistance with pro -
applications running under 1T iy This aceount |."-'GNT SSHAREPDINT \brian.don Emg_" I

Passord |n ssnsns

Conbitmn passwond: |". T

You can enable or disable thiz service for the hardware profiles sbed below:

Hardwware Profila Sarvica [
Prodie 1 Enabled

\ Extended A Standard J

Enatle | [Disable I

ok | cewe | ooy |

Ensure that compilation will be in DEBUG configuration

To profile a SharePoint collection, the ASP .NET compilation must be done in DEBUG
configuration. This will allow ANTS Memory Profiler to locate the source code for any web
parts or other extensions you have written for the site collection. DEBUG configuration
will also relax some unmanaged code restrictions that prevent profiling and stop the site
from timing out.

To set DEBUG configuration, you must know the physical path to the root of the site
collection website.

To find this path:
1. Open Administrative Tools.
2. Open Internet Information Server (IIS) Manager.

3. Right-click the website containing the site collection then click Properties.

© Red Gate Software Ltd 24

4. Open the Home Directory tab.

I Internet Information Services (I1S) Manager

©9 Ble Adion Yew Window Heb
¢~ O@EFRR @S>
-&Imcrrﬂwnnmﬁmwwﬁ Mame
N # focei come | Applcateon SharePoint - 60 Properties
#+_| Applcation Pools | el Sites
B Web Skes IWebServc DirschorySecury | HTTPHeaders | | asenET
e ;’:;::h:”: WebSte | Performance | 1S4PIFiters Documents
; SharePoint Cenbral The conkent For this resounce should come From:
=l Office Server Wb % B directory located on this computer
@ @ SharePoint - 38212 " & ghare located on ancther computer
&+l Wb Servios Extersiar = A red ko 8 LAL
Lecal path: EBromee, .,
™ Suripk souroe access o] i
¥ gead ™ Index this resource
™ wwrite
™ Cirectory browsing
Application sedtings
Appiication nome | oot Regcve I
Starting : «<SharePaint - B0
Execifs permissions: [Scripts and Exscutables Bl
41 | dpplication pec: [sharepaint - & =] Unfpad |
I

You must now locate and edit the web.config file for the site collection using notepad.exe

(or other text-editor).

1. Use Windows Explorer to navigate to the site collection root's physical path.

2. Right-click the web.config file.

3. Open the web.config file using notepad.exe. Search for the text 'Debug'.

© Red Gate Software Ltd

25

4. Change
Debug="False"
to
Debug="True"

and save the file.

P web.config - Notepad

File Edit Format View Help

<httﬁRuntime maxRequestLength="51200" />
<authentication mode="windows" />
<identity fimpersonate="true" />
<authorization>
<allow users="%" />
</authorization:>
<httpmodules:
<Clear />
<add name="SPRequest" type="Mmicrosoft.sharepr
<add name="outputCache" type="System.web.Cac
<add name="Formsauthentication” type="5ystem
<add name="Urlauthorization" tType="System.we
<add name="windowsauthentication” type="Syst
<add name="Rolemanager" type="sSystem.web.Sec
<!l-- <add name="sSession" type="System.web. Se
<add name="PubTishingHttpModule"” type="Micro
<add name="Session" type="System.web.Session
</httpMmodules>
<globalization fileEncoding="utf-8" />
CCOmp lation als JUg= Ttrue >
<assemblies>
<add assembly="Microsoft.shareproint, versi
</assemblies>
<expressionBuilders:>
<remove expressionPrefix="Resources” />
<add expressionPrefix="Resources"” type="Mi

|

Copy PDBs and web part DLLs to the app_bin directory

If you want to be able to filter out all methods except the ones run by your code when

viewing the results, you must copy the relevant files into the site's app_bin directory. To

do this:

1. Copy all PDB files and any web part DLLs used by your site to the Clipboard.
2. Use Windows Explorer to navigate to the site collection root's physical path.

3. Open the app_bin directory.

© Red Gate Software Ltd

26

4. Paste all PDB files and any web part DLLs used by your site into this directory.

1. If the Internet Information Services Manager is not already displayed, open
Administrative Tools and open Internet Information Server (IIS) Manager.

Stop the website.
Start ANTS Memory Profiler.

4. Under Choose application type to profile, click ASP .NET Web Application
(hosted in IIS).

5. Enter the path to the ASP .NET web application that hosts your site collection. The
path should be in the following format:
http://server:port/
The server is the name of the local server and the port is the TCP port that the web
application normally runs on. If the site collection is on the root virtual directory for
the site, you must include the trailing slash is included.

6. To profile your application without restarting IIS select Unused port and enter a new
port number. If your application has port numbers hard-coded, this will not work and
you must chose Original port instead.

7. Use your SharePoint 2007 Site Collection as normal. Any additions that you have
coded, such as web parts and lists, will be reflected in the ANTS Memory Profiler
results if these objects have been accessed.

AMNTS Memory Profiler Settings

[Application Settings 7 Chating Options

Choose apphicabtion type to profile;

[NET executable |21 Windows service

@ ASP.NET web application (IIS) [COM+ server

'E ASP MET web application (web development server) 'E XBAP (local AML browser application)

(5l Silverlight 4browser application
[amtach to a .NET 4 process

ASP MET web application (URL): | hitp: | Jecahest:80/ w| [

3

J| Prafie child procasess
[¥] Monitor disposal of objects 6

Server Settings
Profile on: Original port (II5 will restart) @ Unused port 0| =
Manually specify ASPNET account details i)

v, Profiling will use URL: hitp: [focalhast-B080/

%) St Profiing lﬁ]

© Red Gate Software Ltd 27

A list of all currently-running processes is shown. Select the .NET 4 process to profile.
(Processes which are not compiled with the .NET 4 runtime are unavailable.) Note that
you must disable concurrent garbage collection in the .NET 4 process.

Before you can attach ANTS Memory Profiler to a running .NET 4 process, you must first
disable concurrent garbage collection in your application. This allows ANTS Memory
Profiler to monitor garbage collections, which it cannot do if garbage collections take
place in a different thread.

Disabling concurrent garbage collection means that garbage collection will take place in
the same thread as the application's thread. Note: This may affect the performance of
your application; see the notes below. You can find a description of the concurrent
garbage collector at http://msdn.microsoft.com/en-
us/library/ee787088.aspx#concurrent_garbage_ collection
(http://msdn.microsoft.com/en-
us/library/ee787088.aspx#concurrent_garbage_collection)

To disable concurrent garbage collection, follow these steps:

1. Create a new file, and copy the following XML into it:
<configuration>
<runtime>
<gcConcurrent enabled="false"/>
</runtime>

</configuration>

2. Save this file in the same directory as the application's executable file. The file must
have the same name as the executable file, but a .config extension. (For example, if
your application is sample.exe, the associated configuration file must be named
sample.exe.config).

It is not necessary to rebuild your executable. The .NET CLR will automatically load
the configuration file at runtime.

3. Run your executable and then attach ANTS Memory Profiler to it (see Working with
application settings).

4. When you have finished profiling, delete the configuration file.

1. Open the WebDev.WebServer.exe.config file, located at %ProgramFiles%/Common
Files/microsoft shared/Dev Server/, in a text editor or XML editor.

2. Under the <runtime> node, insert the following text:
<gcConcurrent enabled="false"/>

3. Save the WebDev config file.

© Red Gate Software Ltd 28

http://msdn.microsoft.com/en-us/library/ee787088.aspx#concurrent_garbage_collection
http://msdn.microsoft.com/en-us/library/ee787088.aspx#concurrent_garbage_collection

4. When you have finished profiling, delete the <gcConcurrent> node.

e While concurrent garbage collection is disabled, your application will run faster but
may pause occasionally to allow garbage collections to take place.

e While concurrent garbage collections are disabled, the total memory footprint of your
application is fractionally increased. This is because the concurrent garbage collector
would normally build a graph of unreachable objects on the other thread. This
difference should not be significant enough to alter the results shown by ANTS
Memory Profiler.

e You cannot attach to a .NET 4 process which is running in server garbage collection
mode. If your configuration file contains <gcServer enabled="true"/>, delete this
node.

© Red Gate Software Ltd 29

Setting up performance counters

ANTS Memory Profiler can monitor the values of a number of Windows performance
counters while the application you are profiling is executing. The values of these counters
are constantly updated on the timeline during profiling.

Choose the performance counters you want to monitor using the Charting Options tab
on the ANTS Memory Profiler Settings dialog box.

r:

[Z] Apphcatop Setings | 7 Chanting Oplions

Pefamance-counter data is colected and dsplayed on the imeling to help you beffer understand your spplication's
-

‘fou can select additionsl perdformance courders o record, bul this may reduce prafiing performance

Performance Counters to Record a| |~ Descrition

JNET

| ASP.NET Byies Received/ssc: The rie o which deta byies
B s are received by the World VWiide Web Publishing
i Servios (WWW service]. The 'WWW sendceis 8
B oo e
[[] Bytes Sent/jsec
[F] Btes Totalfsec
|| Comection Attempts fsec
| Files Receved Waming: This counter apples to all nstances of
(& i 15 running on this machne. i does mot apply to
[C] Files Sent/fsec instances of the wab development server
[[] Files/sec
L]
W Memory

Bytes in all Heaps

Thie counter Also accounts for the processing that
accurs in the kemel-mode diver, HTTP ays.

[Fastors Dedaults |

Not all performance counters may be appropriate for the application type you are
profiling. You can find more information about individual performance counters in the
Description box, including details about a counter's relevance to particular application
types.

We recommend that you avoid adding more performance counters than you need, as
each additional counter adds to the overhead introduced by the profiler. Adding too many
counters may, therefore, cause your application to run substantially more slowly.

Private Bytes are shown by default in the timeline in ANTS Memory Profiler because it is
considered the most useful measure for most kinds of memory problem. No single
counter, however, reveals a complete picture of the memory requirements of your
program. The following table summarizes some of the main counters:

© Red Gate Software Ltd 30

Counter Counts memory... Including shared Including

processes? memory
(DLLs in paged to disk?
memory, .NET
runtime)

Private bytes ...asked for No Yes

(even if not in use)

Working set ...in use Yes No

Virtual bytes ...in use Yes Yes

Private working ...in use No No

set*

* Windows Task Manager shows the private working set by default. ANTS Memory Profiler does not show the
private working set because it is only accurate immediately after a garbage collection.

You can add custom performance counters to the list of available counters in the
Charting Options tab. To do this:

1.
2.

Close ANTS Memory Profiler.

Expose your performance counter to the Windows Performance Counter API using the
PerformanceCounter and PerformanceCounterCategory classes of the
System.Diagnostics namespace. (An example describing how to do this is given at
http://msdn.microsoft.com/en-
us/library/system.diagnostics.performancecounter.aspx
(http://msdn.microsoft.com/en-
us/library/system.diagnostics.performancecounter.aspx))

Create a new XML file as follows:
<Counters>
<Category Name="CategoryName">
<Counter Category="CategoryName" Name="CounterName"
Units="Measurement Units">
<Instanced />
</Counter>
</Category>
</Counters>
Ensure that CategoryName and CounterName are the same as the names used for the
PerformanceCounterCategory and PerformanceCounter. Remove the <Instanced />
node if your counter collects data about the computer, not only the individual process.
You can add multiple categories and counters in the same XML file.

Save the XML file as UserCounters.xml in %LOCALAPPDATA%\Red Gate\ANTS
Memory Profiler 6\.

Restart ANTS Memory Profiler.

The counters that you defined are shown in the list on the Charting Options tab.

© Red Gate Software Ltd 31

http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx
http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx

© Red Gate Software Ltd

32

The timeline is visible throughout a profiling session, and provides a frequently updated
display of performance-counter values and instances of events related to the application
you are profiling. You can use this overview of application activity to isolate memory-
profiling results for specific time periods.

Timeline showing that memory is not released after a dialog is closed.

The timeline shows the values for a selection of Windows performance counters. You can
choose which performance counters to display before you start profiling your application.
See Setting up performance counters for more information.

Note: If you are profiling a Silverlight application, the heap size counters are not
displayed in the timeline. This is due to a limitation in Silverlight. Click the Session
Overview tab to show these values.

While you are profiling your application, click the Take Memory Snapshot button in
ANTS Memory Profiler to record memory usage at that time. You can name a snapshot to
make it easier to identify. To name a snapshot, click # next to its name. The name you
type will be shown on the snapshot's tooltip and in the Baseline: / Current: combo boxes
beneath the timeline, if appropriate.

© Red Gate Software Ltd 33

You can analyze memory usage by looking at a snapshot of memory at a specific point in
time, or by comparing two snapshots. This topic outlines how to use the main ANTS
Memory Profiler features to analyze memory usage.

Start by choosing an application to profile, and then take one or more snapshots,
depending on the analysis you want to perform. ANTS Memory Profiler displays a
summary of memory usage in your selected snapshots. Analyzing memory usage has the
following main stages:

1. Snapshot analysis
2. Class analysis
3. Instance analysis

Before you begin, it may be useful to read background information about memory:
e Read suggested strategies for specific types of memory analysis

e Watch .NET memory management introduction video (http://www.red-
gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

)

© Red Gate Software Ltd 34

http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

Start by looking for classes that may indicate a memory leak, or classes with
unexpectedly high memory usage. Use object filters to restrict your investigation to
objects with specific characteristics or specific parts of the application.

The summary shows an overview of the main areas of memory usage; if you are
comparing two snapshots, this includes an overview of the main differences in memory
usage between the snapshots. In the summary or class list, look for classes with
unexpectedly high memory usage, or a large increase in size between snapshots.

The large object heap data can be useful for identifying fragmentation problems. (For
more information on this, see Finding LOH fragmentation)

Mermory summary: snapshot 2 [1 1:56) Comparison: snapshot 2 (1 1:56) vs, snapshot il
lasses with lssgest size L st t
s 0,000 T 158,400
1% N LA ¥ bl
% T 1% 8,078
% 10, 42 t Lo 2,61
F+ el L] as
r u ik L grosth in instances
B S, DO Tarn A, 400
1% S Lo 103
1'% 154 [l 1rd
1% 144 MR 103
L% i1 L] 2
Large Object Heap details Large Object Heap changes
Free space on o HET heaps 16,419,560 Trange in free mace o, - 163,464
Largest froe biogk 16419628 Changes in largest tres biock L +5,112

Maceum son ness obrect (spproe, | AT 330,951 Changs in mecdmun s reey ohijsct P n

The charts for size and number of instances can be useful starting points for identifying
the classes that use most memory.

If you are comparing two snapshots, the charts for growth in size and number of
instances show the five classes which are responsible for the largest increase between the
two snapshots. This information can be useful for identifying classes which are growing.

Click on a class to show more detail about it on the class list.

© Red Gate Software Ltd 35

For an explanation of the Large Object Heap charts, see Finding LOH fragmentation.

© Red Gate Software Ltd

36

Identify instances of classes which you do not expect to be in memory, or instances with
unexpectedly high memory usage. Use object filters to restrict your investigation to
objects with specific characteristics or specific parts of the application.

The class list shows detail of memory usage per class. On the summary or class list, look
for classes with unexpectedly high memory usage, or a large increase in size between
snapshots.

When you enable filters or use the find £ box, the values in the list only include objects
that match the selected criteria.

Kavaspars Tlwiz Kara L S [batea) Sos Dt feptes =)-] Live Imah s Tnatsnew 08 (=1
Svatean. Draedng Solcdineh = 1 B0, Do + 150 400 & 50000 + 4,400 j_.
Zyntem g B - 288 4 -2
SyHEn Gibgaci]] R T E + 80 A (B b LR
SyHean Syie]] ol 442 = 4 i} =
Systen sringl] B - I =
Syaten Windows Fa... DwvicsConisod B0 +T 040 & LI# + 1% &
Syuitamn Colaciiors Hanhbsbla dckat]] 51 5 n O -
Svtem Condapamaee F e pledond £, 3 5 i~ 3 -
Sytean. Coletiong Sk = +2606 & Lr® + U &
Syten Runtines Tape: LEEn +3 A 144 +1 &
Sywhuan Drwsang Faird] 7,700 - [=
ShapePaniter Eligsebhaps 2,840 = e =
SvaEwn 3] 555G - 24 -
ShapePminter RedtanpleShape 260 = =5 =
ShaprPainter TrisngleShape Lm - Fi ! -
Syt Char] 1,800 - 73 -

System et 1,80 = 153

If you are performing a general check on memory usage, or checking where most
memory is used, it can be useful to start by looking at Live Size or Live Instances.
Click on the column heading to sort the column, and look for classes with unexpectedly

large size or number of instances.Right-click on a class and select * Show Class
Reference Explorer to see where instances of the class are being referenced.

If you are looking for a memory leak, it can be useful to begin by looking for unexpected
differences between two snapshots in the Size Diff or Instance Diff columns. Click on
the column heading to sort the column, and then look for classes whose memory usage
or instance count has increased significantly. Use the Comparing snapshots filters to
focus your analysis, depending on the snapshots you are comparing: if you are looking
for objects which exist in both the baseline and the current snapshot, select Only
surviving objects; if you are looking for objects which were created between the two
snapshots, select Only new objects.

© Red Gate Software Ltd 37

e If the class that looks interesting is one you recognize, right-click and select '5'
Show Instance List to look for instances of the class.

e If the class that looks interesting is not one you recognize, right-click and select =#
Show Class Reference Explorer to find out where instances of the class are being
referenced.

Aol | Enfer namespace o 0355 Name. .. o

To find a specific namespace or class, type part of the name in the find box. This can be
useful, for example, if you are checking back on a memory leak you have fixed. In many
cases, we do not recommend starting your investigation by looking for specific classes;
instead, start by looking at the size or instances columns.

We recommend this approach because a lot of the code being executed by your
application is likely to be part of the .NET framework libraries or other third-party
libraries, so you are likely to see leaks in classes which are not your own - even where
your code is the cause of the leak.

The Live Size column shows the total size of instances of the class in the current
snapshot.

The Live Instances column shows the total number of instances of the selected class in
the current snapshot.

The values do not include instances of classes referenced by the selected class.

These values can be good starting points for finding out where most memory is being
used by your application.

To investigate why a class has a large size or high number of instances:
e |ook at instances of the class on the instance list
or.

e investigate whether another class is keeping instances of your class in memory
unexpectedly, on the class reference explorer

When you compare two snapshots, the Size Diff and Instance Diff column show the
differences between the baseline and current snapshots.

An unexpected increase in the size of a class or number of instances may indicate a
memory leak. For example, if you perform an action where you expect new objects to be

© Red Gate Software Ltd 38

cleaned up between the snapshots (such as opening and closing a dialog box), you would
not expect the class to increase in size or number of instances.

There are also cases where an increase in size or number of instances does not indicate a
leak:

e For an application that includes a text editor, the size of the text buffer would be
expected to increase as the user adds more text to a document. In this case, the Size
Diff column for the text buffer class shows an increase in size, but this is not an
indication of a memory leak.

e For an application with a text editor backed by a DOM, the number of nodes of a DOM
would be expected to increase. In this case, the Instance Diff column for the DOM
classes shows an increase, but this is not an indication of a memory leak.

The class reference explorer shows reference relationships between classes, which can
help identify instances which are unexpectedly kept in memory. This can be particularly
useful if your snapshot analysis identifies a class you do not recognize: Use the explorer
to follow chains of references to the class, until you reach a class you recognize which
may be responsible for the memory usage.

When you apply filters, the class reference explorer only includes the filtered objects.

The class reference explorer has two different views:
e Categorized references view

e All references view

This is the default view. In this view, instances of the selected object are categorized by
the shortest path to a GC Root. The path responsible for holding most instances of the
selected class is shown at the top.

To see the instances that each category contains, click your selected class (in black, on
the right), and then click Show instance list.

Hover over the image to see an enlarged view.

© Red Gate Software Ltd 39

In the all references view, your selected class is shown at the center of the graph (in
black). Classes to the left have instances which reference any instance of the selected

class; classes to the right have instances which are referenced by at least one instance of
the selected class.

System Securty SecarftyBement

[

Svstem Xmi Schema XmiGchemaltt ecsCafiection

System Colections ArrayList

=

| Srstem Datz DataCotmeCaiection

| S—

Systam Data DataRsistionColiec tions DataTatseRetationC oliect | o0

e The percentage shown on a class indicates the proportion of instances of the selected
class (in the center) that are connected to it by references along that path. Look at
the percentages on classes to the left of the selected class to assess which classes are
responsible for instances of the selected class being in memory.

e To find out why your selected class is unexpectedly large, look at the class that is
responsible for most references to the selected class.

+ In the categorized references view, this is on the top row, to the left of the

selected class. Click the class to expand the graph, showing classes that reference
this class.

+ In all references view, this is the class at the top-left of the graph. Follow the path
to the left to see classes that reference this class.

© Red Gate Software Ltd 40

e The graph shows all references between classes, so you may find that as you expand
classes and follow references along a particular path you start to see the same classes
repeatedly in the path. This is a circular reference chain, and you are unlikely to find

]
useful information by continuing to follow it. Instead, click “mShow instances of
this class on this path to display the instance list for one of the classes on this path,

and then display the object retention graph for an instance, to investigate why the
instance is in memory.

e If you are looking for the Class Reference Explorer from ANTS Memory Profiler 6 and
earlier, select All references view.

© Red Gate Software Ltd 41

Investigate what is keeping a selected object in memory unexpectedly.

The instance list shows detail for all instances of a class, which can help identify
instances which are the likely cause of a memory problem.

When you enable filters, the list only includes objects that match the selected criteria.

Mew Object | Ve Size (hytes) Size with Children (bytes) GC Root Object Distamce from SO Root
Mo | @ Sgnature z 48 B0 | o .'-'
Yies Sagnahure 48 &0 Mo T
Mo Sgnature 43 6 | Mo 3
e Sagraturs 43 T2 Mo 10
Yes Signature 48 &8 | Mo 14
s Sgnahure 43 7T Mo 10
i St 43 68 | Pa 10
Yes Sgnature 48 T2 Mo 140
Yes Signature 48 &8 | Mo 10
s Sgnahue 48 T Mo 10

The instance list is useful for understanding what instances of a class are in memory, and
for identifying objects which are likely to be involved in a memory leak.

Click ® in the Value column to find out more about the properties of a specific instance.

.ﬁ Instance List for SystemEvents O Showing 1 of 1 ohjects {0 fi
Mew Object | Malue Size ik

“ @ consoleHandler | M ativetd ethods+ConHndir E
windowHandle | +0x000811e6
& windaowProc M ativet ethods+wndProc

The New Object column indicates whether the object was created between two
snapshots you are comparing, or whether it existed already in the earlier snapshot. (This
column is only populated when you are comparing two snapshots.)

When you are comparing two snapshots, either Yes or No in the New Object column
may be an indication of leaked objects, depending on when you took your snapshots.

© Red Gate Software Ltd 42

e Yes may indicate a memory leak when you are comparing snapshots and you expect
instances of the selected class to be cleaned up between snapshots. For example, you
take a snapshot before and after opening and closing a dialog box. Objects created by
the action should be cleaned up before you take the second snapshot, so new objects
in the second snapshot are likely to indicate a memory leak.

When you investigate these new objects further, apply the Only new objects filter;
this ensures you are only looking at objects which are new in the second snapshot.

e /No may indicate a memory leak when you are comparing snapshots and you expect
instances that exist before the first snapshot to be cleaned up by an action you take
between snapshots. For example, you populate a list with data, and then take a
snapshot before and after clearing the list. Objects created before the first snapshot
should be cleaned up before you take the second snapshot, so old objects in the
second snapshot are likely to indicate a memory leak.

When you investigate these objects further, apply the Only surviving objects filter;
this ensures you are only looking at objects which exist in both snapshots.

The GC Root Object column indicates whether the object is a GC root object. A GC root
can be any storage slot to which the running program has access, such as a local
variable, static variables, or even a CPU register. (Strictly speaking, the object itself is
not the GC root; the storage slot that holds the reference to the object is the GC root.)

When the garbage collector runs it determines which objects are not garbage by walking
the heap, starting at the GC roots. Objects which can be reached by following a chain of
references from a GC root are designated as not garbage, and are not collected.

To find out why an object in the instance list is a GC root, right-click on it and then select

= Show object retention graph. Information on the graph shows why the object is a
GC root.

GC Handle

. The Forml object is a GC rook because it has been designated a §
/ShﬂpﬁpﬂlﬂtEF.Fﬂ G handle using GCHE!I'H:"E..':'."DEI: }

\ m_Shapes /
v

GC root objects are not usually the source of memory leaks. However, they can be useful
in finding memory leaks because there is always a chain of references between the
leaked object and one or more GC roots. To enable the garbage collector to clean up the
object, you need to break this chain of references by changing your code to remove one
of the "links" in the chain.

The GC Root Object column shows 'Yes - Weakly Referenced' if the object is weakly
referenced. Objects with weak references are often used for cacheing because these
objects can be destroyed by the garbage collector if memory becomes low. For this
reason, weakly referenced objects are not usually the source of memory leaks.

© Red Gate Software Ltd 43

The Distance from GC Root column shows the number of references in the chain
between the object and its nearest GC root.

It is likely that shorter, more obvious chains of references between objects and their GC
roots have been broken already. Often objects which are at a greater distance from a GC
root may be involved in a memory leak, because the chain of references from the GC root
to the object is more complex.

The Size with children column shows the size of the object and any object that it
references that is further away from a GC root. This means that the value is a realistic
estimate of the amount of memory that would be saved by removing a particular object
from memory.

© Red Gate Software Ltd 44

What to look for on the object retention graph

The object retention graph shows chains of references between GC roots and your
selected object. Start at your selected object and follow the chains of references up
towards the GC roots, to identify references that are preventing the garbage collector
from collecting your object. When you find an unexpected reference, modify your code to
break the reference, and then profile the application again to check the problem is fixed.

) & rende
ShapePainter.Forml

T
f _}\:wfmll"r-r'l_;wﬁﬁnhrr { -\
_.-"_rnmnm.c.:nfig.mtiun.clinnxu-iigmtiuns..m-nm‘\\
A\ _complebeConfigRecard i
L f +
System Configuration. Runbim eConfigurationfeosrd
this a5 BaseConfiguratonRecord)._sachonRecords
‘ ¥
|' System.Collections. Hashtabis
| buclosts
r ShapePainter.Shapes 1 T
[[this a5 ColectionBass) list J System.Collections.Hashtable + budcet]] |
System. Configuration. SectionRecord |
_rasult
_resultfuntmeObjact
Sysbem. Windows.Form s. WindowsFormsSection
T ¥ | [thi= &s Configur sbonElement]. _values
| System . Configuration.Configuration¥.alues |
| (this a5 NameDbjectCollectionBase),_enfressrray |
‘. * .,

System.Collections. ArrayList | System_Collections. ArrayList
| _ftems

— ¥ - - !

Systemn.Object]]

¢ System.Object{]

_items

System.Object{] The object you selected.

GC root object.

Reason why the object below is a GC root.

© Red Gate Software Ltd 45

e e ———_———

s [b eparyrs o £ b by Vg

|
[Sha pePainter.Shapes
| (this == ColectonBase)st |

System.Collechions. ArrayList

|
ShapePainter.Shapes
| [this a5 ColechonBasz].lst]

Y

System.Colledbons Araylist

Group of strongly-connected objects (see tips below).

Object for which you have source code.

Object for which you do not have source code.

The simplest path between these two objects.
(Note that if you break this link, the objects may still
be connected by a more complex link.)

For more information about specific objects on the graph, move the mouse cursor over
the object; details are displayed in a tooltip.

e The object retention graph only shows the shortest chain of references from each GC
root to your selected object. When you break this chain of references, the object may
still be kept in memory by a longer chain of references.

After you have modified your code to break the first chain of references, profile your
application again; the object retention graph updates to show the chain of references
which is now the shortest chain. You will need to modify your code again, to break
this chain of references, and repeat until all the chains of references are broken and
the object is no longer in memory.

e Objects grouped in a box are strongly connected; every object references every other
object in the group (the reference may be direct or indirect). To remove an object
from memory, you do not normally need to break all the references between a GC
root and your object: only one of the references needs to be removed to prevent your
object from being kept in memory.

However, the relationship between strongly connected objects is complex, so in this
case you may need to break more than one reference to prevent your object from

© Red Gate Software Ltd

46

being held in memory. Break the references one at a time, and take new snapshots
each time to check whether your object is still in memory.

e If there is an event handler in the chain of references from a GC root to your object,
look at the objects that directly reference the event handler; these references are
often a good point to break the chain of references to your object.

e If your graph shows an object which seems to not be referenced by anything, it may
be because this object is on the finalizer queue. The graph hides finalizer queue GC
roots by default, because they do not normally indicate a memory problem. To show
these objects on the graph, clear the Hide finalizer queue GC roots option (in the
bar above the graph).

If the graph shows your object is being kept in memory by an object on the finalizer
queue, take another memory snapshot. Taking a snapshot forces the garbage
collector to run, so your object should now be removed from memory.

© Red Gate Software Ltd 47

Using filters to find objects

Use the object filters to focus your memory usage investigation on objects that are more
likely to be of interest.

Select one or more of the filters to show only objects that meet all of the selected criteria.
Other objects are hidden.

The bar above the results area indicates the number of objects affected by the current
filters:

r - 14 P rn— - Sxicie W shapchod 2013000 - f i Snnpahols Cowarl: B snapalel 3(1%00 a ; —
Rivrdted Abalpdn i i [rararce Sk &
(i Sy B e L > B i DD e metenton wah &
Arvmrced nbgect FEere | Shovarey T oF 2 claawan |1 e Dbty Claasan b, anel st 10oren £5da =
[] Firnad slriecis
- s . & Conparison: sivigrsiot 3 (13:10) ve. siepahod
T ——— P, Miemary sutremacy: snapshet 3 (151000 (1301
Ve vl sbsieiuies: 0 e with llarpest sire Larrmesk groste n uer
"] e ey oy by el el F
O et i ¢ oo | =% [
.] = o
] Wt iy oy by biscts Froar Trisrglathara I [- s Il
[— [tare]
re, T " z
] et s sy by b 50T s o et
. basts weil |y sl el aew =i Lawpes] grirad by irfanwe s
e . =
v | = I
- e 1% o s =
] Fsfarmrcac by an rakarce o . . ™ o S 'l
e & 29 o
[Fervar rafwemncadd by am rstarca of: Large ot hesp detals i t Teeag
Free soaie of ol HET hndgss 1315884 arpnfeesar e T B
& Bscoowmnions o s e, Lot b ok EALS B ke i bt s bk, o T R
'.,r = B Mac. wxm of ey object | spprce. | & 0R 4, 021 Crangs in medram wm = o, M o
L ;
% Acmroad R 1 gl 0 T T 3 T The sarnasry chopans an cveres of sy usion. et laok FOr_00. th: S [=]

When using filters, you may see some objects which do not match the filter criteria. If
this happens, take another snapshot. This forces a garbage collection so that any objects
on the finalizer queue are removed.

Suggestions for using filters

Filters alone cannot identify memory problems, but they can help narrow down your
search space. The following notes suggest filters that can be useful in some conditions.

Filters which can help find a memory leak

The following filters can be useful in finding a memory leak:
Disposed objects which are still in memory
Kept in memory only by event handlers
Kept in memory only by disposed objects

Only zombie objects (in the Comparing snapshots filters)

© Red Gate Software Ltd 48

Note that the 'Disposed objects which are still in memory' and 'Kept in memory only by
event handlers' filters are not available when profiling a .NET 1.1 application.

The following filters can be particularly useful when you want to focus on a specific part of
an application, or exclude a specific part of an application:

Objects on large object / Gen 0 / Gen 1 / Gen 2 heap
Kept in memory only by objects from namespace (in the Advanced filters)

Never referenced by an instance of class/interface (in the Advanced filters)

Note that the 'Objects on large object / Gen 0 / Gen 1 / Gen 2 heap' filter is not available
when profiling a .NET 1.1 application.

You can also focus on a specific part of an application by using the Process selection
filter.

See Strategies for memory profiling for examples of how to incorporate filtering in your
memory profiling workflow.

When you apply multiple filters, only objects which match all the filters are shown (i.e.
there is an AND relationship between filters).

For example, select the following filters:
e Disposed objects which are still in memory

e Objects on Gen 1 heap

Objects are only shown if Dispose() has been called on them and they are on the Gen 1
heap.

Some of the filters enable you to narrow down your search for memory problems by
concentrating on certain types of relationships between objects.

Objects may be in memory because another object references them; the object is on at
least one of the chains of references between the selected object and a GC root.

© Red Gate Software Ltd 49

Example: objects referenced by Object 1

In this example all objects except Object 2 are referenced by Object 1, either directly or
indirectly. Note that the filter selection includes the specified object, Object 1.

Some filters show objects where the selected object is in all chains of references between
the objects and a GC root - that is, objects are kept in memory only by the selected
object.

Example: objects kept in memory by Object 1 (note that the filter includes the selected
object, Object 1)

In this example, only four objects are kept in memory only by Object 1. Object 1 is not in
all the chains of references between the remaining objects and their GC roots; for
example, Object 4 has another GC root which references it via Object 2. Note that the
filter selection includes the specified object, Object 1.

See also

Using filters to find objects........ccvvviiiiiiiiii s 48

© Red Gate Software Ltd 50

Object filters enable you to focus your analysis on specific types of object or specific parts
of the application. This topic describes the available filters, and suggests situations in
which they might be useful.

Show only objects on which Dispose() has been called, but which cannot be garbage-
collected because a reference to the object still exists in memory.

Disposed objects should not normally be kept in memory, so this filter can be a good
indicator of a memory leak.

When you have identified a disposed object with this filter, display it on the object
retention graph, then follow the chains of references to identify the objects keeping the
disposed object in memory.

This filter is not available when you are profiling a .NET 1.1 application.

Show only objects in the selected area of memory.

This filter is not available when you are profiling a .NET 1.1 application.

Show only objects on the finalizer queue on which Dispose() should be called.

Show only objects where all chains of references between the object and a GC root go
through an event handler.

Examples: objects kept in memory only by event handlers

© Red Gate Software Ltd 51

(note that the event handler is included in the objects shown)

GC Root GC Root
¥ > v
bject 1 Object 2 Object 3
< v
(" EventHandler | Object 5
> < <
[Object 6 Object 7 Object 8

I e ot ~
Object9 | [Object 10 Object 11 Object 12

k4
[EventHandler] [Object 2]

e F
- " |]

[Object 5] [ﬂb]a:tﬁ] [Object 7] [Object 8]

Event handlers should not normally be the only reason an object is kept in memory, so
this filter can help identify a memory leak.

When you have identified an object that is kept in memory only by an event handler,
display it on the object retention graph, and follow the chain of references from the
object to the event handler; it is likely that the cause of the problem is an object close to
the event handler.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Show:
e disposed objects
and

e objects where all chains of references between the object and a GC root go through a
disposed object

Examples: objects kept in memory only by disposed objects

© Red Gate Software Ltd 52

(note that the disposed object is included in the objects shown)

GC Root GC Root
- > v
Object 1 Object 2 Object 3
D v
{ Disposed Object | Object 5

> 7§
(obm_J
Object 9 Object 10 Object 11 Object 12
_J =

[Disposed Dh]ecl: [Dbjectz

’_‘* ﬂh_]ect 4

I‘.]I:l_]EEI:E] [Dh]ectﬁ Dh]ect? J [ﬂbjectﬂ J

vl &
2

S

E
+l

Disposed objects should not normally be kept in memory, so this filter can help identify
memory leak.

When you have identified an object that is kept in memory only by a disposed object,

a

display it on the object retention graph, and follow the chains of references to identify the

objects keeping the selected object in memory.
Note: Objects which match your criteria but are on the finalizer queue are not shown.

This filter is not available when you are profiling a .NET 1.1 application.

Show objects in your current snapshot, based on the comparison with your baseline
shapshot.

Only new objects

Show only objects created between the baseline snapshot and the current snapshot.

Only surviving objects
Show only objects that remain in memory in both the baseline snapshot and the
current snapshot.

Only zombie objects

Show only objects that showed indications in the baseline snapshot that they would
not survive in the current snapshot, but which are still in memory in the current
snapshot.

This includes objects with the following characteristics:

© Red Gate Software Ltd

53

e Objects on which Dispose() has been called in the baseline snapshot, but which
are still in memory in the current snapshot because garbage collection was
prevented for some reason

e Objects on the finalizer queue in the baseline snapshot (this includes objects still
on the finalizer queue in the current snapshot and objects which are no longer on
the finalizer queue in the current snapshot)

These objects should not normally still be in memory in the current snapshot, so they can
be useful for identifying a memory problem.

Show only objects marked to not be moved in memory. An increasing number of these
objects could indicate that the objects are not being unpinned for some reason.

Large numbers of pinned objects can cause performance problems because of the way
the garbage collector handles these objects.

Hide GC root objects or show only GC root objects.

If you are investigating a memory leak, it may be useful to hide GC root objects, because
they are not generally the source of leaks.

If you are performing a general check on memory usage, it may be useful to show only
GC root objects. Show the class list to see details of classes with instances which are GC
roots, and then use the class reference explorer to investigate the relationships between
these classes and other classes with instances in memory.

Tip: To look for specific types of GC roots, combine this filter with the Kept in memory
only by GC roots of type filter.

Show:
e instances of the specified class or interface (including derived types)
and

e objects where instances of the specified class or interface exist in all chains of
references between the object and a GC root

Example: objects kept in memory only by the class that Object 4 is an instance of

© Red Gate Software Ltd 54

(note that Object 4 - which is an instance of the specified class - is included in the objects
shown)

Object 1 Object 2 Object 3

[Object 4) Object 5
. — > . |
[Object 6 Object 7 Object 8
e e .4 >
((object9 | ("object10 | | Object 11 Object 12 |

Example: objects kept in memory only by the class that Object 1 is an instance of

DI:l_]E::I:E] [Db_]ar:l:ﬁ Db_]El:l:?] [_Dbjer:tS]

This filter shows objects where instances of the specified class or interface (including
derived types) exist in all chains of references between the object and a GC root. To show
objects where instances of the specified class exist in at least one chain of references (but
not necessarily in all chains of references) between the object and a GC root, use the
Referenced by instances of class/interface filter.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Show:
e objects from the specified namespace
and

e objects where instances of classes from the specified hamespace exist in all chains of
references between the object and a GC root

Example: objects kept in memory only by a class from the namespace that Object 4 is an
instance of

(note that Object 4 - which is an instance of the a class in the specified namespace - is
included in the objects shown)

PR . e, il
[obme) [object 10 ‘ Object 11 Object 12 |

© Red Gate Software Ltd 55

Example: object kept in memory only by a class from the namespace that Object 1 is an
instance of

When you select multiple namespaces for this filter, objects are shown if they are
instances of classes in any of the namespaces.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Show objects with GC roots of the specified types (includes objects which are GC roots).

When you select more than one type of GC root, objects are shown if they have a GC root
which is any of the selected types.

Tip: To look for specific types of GC roots, combine this filter with the Objects which
are GC roots filter.

Show only objects which are referenced by one or more instances of the specified class or
interface (including derived types). The reference may be direct or indirect.

Example: objects referenced by the class that Object 4 is an instance of

(note that Object 4 - which is an instance of the specified class - is included in the objects
shown)

GC Root GC Roat
¥ - ¥
Object 1 Object 2 Object 3
) —+ L
[obrect 4 Object 5
—~—_ X i
Object 6 Object
—r Y el
[(objecta) ((obtect 10] [Dlzjeuu) [object 12)

© Red Gate Software Ltd 56

Example: objects referenced by the class that Object 1 is an instance of

[Ohject 5] [Cllbjectﬁ] [Object 7] [Ohject 8]

When you select multiple classes or interfaces for this filter, objects are only shown if
they are referenced by all of the selected classes and interfaces.

This filter shows objects where instances of the specified class exist in at /least one chain
of references between the object and a GC root. To show objects where instances of the
specified class exist in all chains of references between the object and a GC root, use the
Kept in memory only by instances of class/interface filter.

Show only objects which are never referenced by an instance of the specified class or
interface (including derived types). This includes direct and indirect references.

Example:objects never referenced by the class that Object 4 is an instance of

{6CRoot { 6C Root

P x| > -
{Kou,eun) [objmz) ;‘on,maJ
X < — v
Object 4 | Object s]
¥ > D
Object 6 Object 7 | Objects
-+ < | 4 >

Dbject 9 Object 10 Object 11 Object 12

When you select multiple classes or interfaces for this filter, objects are only shown if
they are not referenced by any of the selected classes or interfaces.

Note: Objects which match your criteria but are on the finalizer queue are not shown.

Some examples of when you might want to use this filter:

e You know that all the data in your application should be referenced by a single main
class. Apply the Never referenced by an instance of class/interface filter to
remove objects referenced by the main class from the results.

e Your application performs caching (for example, web applications that cache the query
results). Cached objects are deliberately kept in memory for a period of time. Apply
the Never referenced by an instance of class/interface filter to exclude objects
referenced by a cache class (for example, System.Web.Caching.Cache, for ASP.NET
applications).

© Red Gate Software Ltd 57

Watch the video tutorials to see examples of ANTS Memory Profiler in action, and learn
more about some areas of functionality:

Finding a memory leak (http://www.red-
gate.com/products/ants_memory_profiler/overview.htm)

One of the Support Engineers for .NET tools takes you through the new ANTS Memory
Profiler and illustrates how to use the tool to find a memory leak.

Using filters to speed up your search for memory problems (http://www.red-
gate.com/products/ants_memory_profiler/filters.htm)

Stephen Chambers, the Usability Engineer who worked on this profiler, demonstrates
how you can use the filters to speed your search for a memory leak.

Using the class reference explorer to find a memory leak (http://www.red-
gate.com/products/ants_memory_profiler/class_reference.htm)

Stephen Chambers, the Usability Engineer who worked on this profiler, demonstrates
how you can use the Class Reference Explorer graph to locate your memory leak.

Using the timeline (http://www.red-
gate.com/products/ants_memory_profiler/timeline.htm)

Stephen Chambers, the Usability Engineer who worked on this profiler, shows you
how to use the timeline in the new ANTS Memory Profiler 5.

For a general introduction to .NET memory management:

.NET memory management (http://www.red-
gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

)

© Red Gate Software Ltd 58

http://www.red-gate.com/products/ants_memory_profiler/overview.htm
http://www.red-gate.com/products/ants_memory_profiler/overview.htm
http://www.red-gate.com/products/ants_memory_profiler/filters.htm
http://www.red-gate.com/products/ants_memory_profiler/filters.htm
http://www.red-gate.com/products/ants_memory_profiler/class_reference.htm
http://www.red-gate.com/products/ants_memory_profiler/class_reference.htm
http://www.red-gate.com/products/ants_memory_profiler/timeline.htm
http://www.red-gate.com/products/ants_memory_profiler/timeline.htm
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html
http://www.red-gate.com/products/ants_memory_profiler/DOTNET_Memory_Management/index.html

Red Gate is a registered trademark of Red Gate Software Ltd registered in the U.S. Patent
and Trademark Office.

.NET Reflector and SQL Compare are registered trademarks of Red Gate Software Ltd
registered in the U.S. Patent and Trademark Office.

ANTS Performance Profiler, ANTS Memory Profiler, .NET Reflector Pro, Exception Hunter,
Schema Compare for Oracle, SQL Backup, SQL Data Compare, SQL Comparison SDK,
SQL Dependency Tracker, SQL Doc, SQL HyperBac, SQL Log Rescue, SQL Multi Script,
SQL Packager, SQL Prompt, SQL Refactor, SQL Response, SQL Storage Compress, SQL
Toolbelt, SQL Virtual Restore, and Exchange Server Archiver are trademarks of Red Gate
Software Ltd.

Microsoft, Windows, Windows 98, Windows NT, Windows 2000, Windows 2003, Windows
XP, Windows Vista, Windows 7, Visual Studio, and other Microsoft products referenced
herein are either registered trademarks or trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

InstallShield is a registered trademark and service mark of InstallShield Software
Corporation.

All Red Gate applications are © Red Gate Software Ltd 1999 - 2013

SQL Backup, SQL Compare, SQL Data Compare, SQL Packager, and SQL Prompt contain
software that is Copyright © 1995 - 2005 Jean-loup Gailly and Mark Adler.

SQL Doc includes software developed by Aspose (http://www.Aspose.com).

SQL Backup contains software that is Copyright © 2003 - 2008 Terence Parr. Refer to the
ACKNOWLEDGEMENTS.txt file in your SQL Backup installation directory for the full license
text.

© Red Gate Software Ltd 59

