
1. ANTS Memory Profiler 7 documentation . 3
1.1 Requirements . 4
1.2 Installing . 5
1.3 Licensing . 6

1.3.1 Activating . 7
1.3.2 Deactivating . 13
1.3.3 Troubleshooting licensing and activation . 16

1.4 Upgrading . 19
1.4.1 Upgrading to ANTS Memory Profiler 7 . 20
1.4.2 Using Check for Updates . 22
1.4.3 Troubleshooting Check for Updates errors . 24

1.5 Understanding memory problems . 25
1.5.1 Memory management primer . 26
1.5.2 Understanding ANTS Memory Profiler . 30

1.6 Setting up and running a profiling session . 31
1.6.1 Profiling an executable . 32
1.6.2 Profiling a web application . 33

1.6.2.1 Profiling on IIS . 34
1.6.2.2 Profiling on IIS Express . 35
1.6.2.3 Profiling on web development server . 36
1.6.2.4 Profiling SharePoint . 37

1.6.2.4.1 Profiling SharePoint 2010 . 39
1.6.3 Profiling a Silverlight application . 40
1.6.4 Profiling a Windows service . 42
1.6.5 Profiling COMplus servers . 43
1.6.6 Profiling XBAPs . 45
1.6.7 Attaching to a process . 47

1.6.7.1 Forcing your application to use .NET 4 . 49
1.6.8 Setting up performance counters . 50

1.6.8.1 Adding custom performance counters . 52
1.6.9 Using the Visual Studio add-in . 53

1.7 Strategies for memory profiling . 54
1.7.1 Checking for large object heap fragmentation . 55

1.7.1.1 Fragmentation notices in ANTS Memory Profiler 7 . 56
1.7.2 Checking unmanaged memory usage . 57
1.7.3 Checking managed memory usage . 58

1.7.3.1 Finding out what is using most memory . 59
1.7.3.2 Finding and fixing a memory leak . 60
1.7.3.3 Checking that a memory leak is fixed . 62

1.8 Working with ANTS Memory Profiler . 63
1.8.1 Working with the timeline . 64
1.8.2 Working with the Summary tab . 66
1.8.3 Working with the Class List . 68
1.8.4 Working with the Instance Categorizer . 70
1.8.5 Working with the Instance List . 72
1.8.6 Working with the Instance Retention Graph . 74
1.8.7 Working with object filters . 77

1.8.7.1 Working with basic filters . 78
1.8.7.2 Suggestions for using filters . 80
1.8.7.3 Filtering by object type . 81
1.8.7.4 Filtering by reference . 82

1.8.8 Using the snapshot API . 86
1.9 Worked example . 87

1.9.1 Video tutorials . 89
1.10 Troubleshooting . 90

1.10.1 Common issues . 91
1.10.1.1 Attach to process unavailable with some anti-virus software . 92
1.10.1.2 Memory leaks observed when profiling WPF applications . 93
1.10.1.3 Silverlight in-browser profiling stops with no results . 94
1.10.1.4 Silverlight out-of-browser profiling stops with no results . 95
1.10.1.5 Troubleshooting SharePoint profiling . 96
1.10.1.6 Troubleshooting the Visual Studio add-in . 103

1.10.2 Error messages . 104
1.10.2.1 Couldn't open metabase . 105
1.10.2.2 Error stopping IISAdmin profiling IIS web application on Windows XP . 106
1.10.2.3 Failed to CoCreate Profiler . 107
1.10.2.4 No Disk . 108
1.10.2.5 Operation could destabilize the runtime . 109
1.10.2.6 The COMplus application has not loaded the .NET Framework . 110
1.10.2.7 The snapshot failed because .NET did not report every referenced object . 111
1.10.2.8 The system cannot find the file specified . 112
1.10.2.9 The type initializer for 'y.layout.hierarchic.ClassicLayerSequencer' threw an exception . 113

1.10.2.10 Unable to connect to server . 114
1.10.3 Unexpected behavior and technical questions . 115

1.10.3.1 Profiler prompts for location of source code which is not your own source code . 116
1.10.3.2 Profiling a Windows service fails if the service uses a system account . 117
1.10.3.3 Profiling Microsoft Office managed-code add-ins . 118
1.10.3.4 Rebuilding performance counters . 119
1.10.3.5 Total size of all objects does not match the memory footprint of an application . 120

1.10.4 Finding the ANTS Memory Profiler log files . 121
1.11 Release notes and other versions . 122

1.11.1 ANTS Memory Profiler 7.4 release notes . 123
1.11.2 ANTS Memory Profiler 7.3 release notes . 124
1.11.3 ANTS Memory Profiler 7.2 release notes . 125
1.11.4 ANTS Memory Profiler 7.1 release notes . 126
1.11.5 ANTS Memory Profiler 7.0 release notes . 127
1.11.6 ANTS Memory Profiler 6.0 release notes . 128
1.11.7 ANTS Memory Profiler 5.2 release notes . 129
1.11.8 ANTS Memory Profiler 5.1 release notes . 130
1.11.9 ANTS Memory Profiler 5.0 release notes . 131

1.
2.
3.
4.
5.

ANTS Memory Profiler 7 documentation

About ANTS Memory Profiler
ANTS Memory Profiler enables you to profile memory usage of applications written in any of the languages available for the .NET
Framework, including Visual Basic .NET, C#, and Managed C++. This is useful, for example, to improve memory usage by
identifying the objects and classes that use most memory, and objects that remain live the longest.

You can use ANTS Memory Profiler to profile .NET desktop applications, ASP.NET web applications hosted in Internet Information
Services (IIS) or the ASP.NET Development Server, .NET Windows services, COM+ server applications, Silverlight 4 or later
applications, and XBAPs. In addition, you can profile applications that host the .NET Runtime, for example Visual Studio .NET
plug-ins.

For more information, see the .ANTS Memory Profiler product page

Quick start guide
The exact procedure you use to find your memory problem depends on your application and what you are trying to achieve. In all
cases, there are five general steps:

Choose the application that you want to profile
Identify what kind of memory problem you have
Take one or more memory snapshots
Follow an for the type of problemappropriate strategy
Analyze and interpret the profiling results

Some knowledge of .NET memory management is useful before you start. If you need a refresher on this, see our Memory
.management primer

http://www.red-gate.com/products/dotnet-development/ants-memory-profiler/

Requirements

You can use ANTS Memory Profiler with the following versions of the .NET Framework:

1.1 (32-bit applications only)
2.0 (32-bit or 64-bit applications)
3.0 (32-bit or 64-bit applications)
3.5 (32-bit or 64-bit applications)
4.0 (32-bit or 64-bit applications)

Some filters and functionality are not available when profiling .NET 1.1 applications; see the for more details.List of object filters

1.
2.

Installing

Most Redgate products are available as part of a bundle. You can select which individual products to install when you run the installer.

When you install a non-free product, you have 14 days to evaluate the product. For the DLM Automation Suite, DLM Automation Suite for Oracle,
SQL Source Control, Schema Compare for Oracle, Data Compare for Oracle, and Source Control for Oracle, you have 28 days. For more
information, see .Licensing

To install a Redgate product:

Download the product from the .website
Run the installer and follow the instructions.

The product is listed on the menu under .Start Red Gate

https://documentation.red-gate.com/display/XX/Licensing
http://www.red-gate.com/products/

Licensing

When you install most Redgate products (apart from free ones), you have to evaluate them without purchase.14 days

For a few products, you have 28 days: DLM Automation Suite for Oracle, SQL Prompt, SourceDLM Automation Suite, SQL Source Control,
Control for Oracle.

If you need more time to evaluate a product, email .licensing@red-gate.com

Finding your serial number

When you buy a license for a product, we'll send you an invoice that contains your serial number to activate the product. Your invoice shows how
many instances of a product the serial number can be used to activate. For information about how to activate, see .Activating

If you can't find your invoice, you can view your serial numbers at . You'll need to log in to your Redgate accountred-gate.com/myserialnumbers
with the email address and password you provided when you bought the product.

Serial numbers for bundles and suites

If you've bought a bundle or suite of products, your serial number activates all the products in the bundle or suite. For bundles containing both
server and client tools (such as the SQL DBA Bundle) you will have two serial numbers.

If you deactivate a bundle or suite serial number, all products using that serial number will be deactivated.

For information on which products are included in a bundle, see .Bundle history

Changing the serial number used to activate a product

To change the serial number used to activate a product, on the menu, select . For some products, you will need toHelp Enter Serial Number
deactivate the old serial number first.

Moving a serial number to a different computer

To move a serial number to a different computer, deactivate the serial number on the old computer, then use it to activate the product on the new
computer.

To deactivate a serial number, on the menu, select . If the Deactivate Serial Number menu item isn't available,Help Deactivate Serial Number
use the .deactivation tool

If you can't deactivate a serial number, use the page to request more activations for your serial number. You'll need toRequest Extra Activations
provide your serial number and the reason for the additional activations.

If you need to reinstall products on the same computer (eg after installing a new operating system), you can reactivate them using the
same serial number. This doesn't affect the number of distinct activations for the serial number. For information about moving a serial
number to a different computer, see below.

https://documentation.red-gate.com/display/XX/Activating
http://www.red-gate.com/myserialnumbers
https://documentation.red-gate.com/display/XX/Bundle+history
https://documentation.red-gate.com/display/XX/Deactivating
http://www.red-gate.com/requestactivations

1.

2.

Activating

When you activate a product with your serial number, the licensing and activation program sends an activation request to the Redgate activation
server, using checksums of attributes from your computer. The checksums sent to the activation server do not contain any details that might pose
a security risk. The activation server returns an activation response and an encrypted key to unlock the software. The licensing and activation
program should activate your product within a few seconds.

If you experience problems with activating your products, you'll be directed to .activate manually

Activating using the GUI
Activating using the command line
Manual activation

Activating using the GUI

To activate your products:

On the menu, click .Help Enter Serial Number
The product activation dialog box is displayed, for example:

Enter your serial number.
When you have entered a valid serial number,

 is displayed next to the serial number box:

This page applies to a number of Redgate products, so the screenshots below may not match your product.

These instructions apply to a number of Redgate products, so the screenshots below may not match your product.

2.

3.

4.

If you want to receive email updates from Redgate, enter your email address.
The list of identifiers and your email address may already be populated using information available to the licensing client from the
Windows installation on your computer. No information is sent back to Redgate when the fields are populated.
When you activate your product, the optional information you entered is recorded by Redgate with your serial number. Your email
address is not linked to the data collected should you consent to participate in the Quality Improvement Program provided with some Red
Gate products.
Click .Activate
Your activation request is sent to the Red Gate activation server.
When your activation has been confirmed, the page is displayed, for example:Activation successful

4.

5.

If there is a problem with your activation request, an error dialog box is displayed. For information about activation errors and what you
can do to resolve them, see . Depending on the error, you may want to try Troubleshooting licensing and activation errors manual

.activation
Click .Close
You can now continue to use your product.

Activating using the command line

Open a command prompt, navigate to the folder where your product executable file is located and run a command with the following syntax:

<name of productEXE> /activateSerial:<serialNumber>

For example:

sqlcompare /activateSerial:123-456-789012-ABCD

The product activation dialog box is displayed. Follow the instructions below.

Manual activation

Manual activation enables you to activate products when your computer does not have an internet connection or your internet connection does
not allow SOAP requests. You will need access to another computer that does have an internet connection.

You can use manual activation whenever the dialog box is displayed and the button is available, for Activation Error Activate Manually
example:

https://documentation.red-gate.com/display/XX/Troubleshooting+licensing+and+activation+errors

1.

To activate manually:

On the error dialog box, click .Activate Manually

The dialog box is displayed, for example: Activate using the Red Gate Web site

1.

2.

3.

4.
5.

6.

Copy all of the activation request, and (if you close the dialog box, you may have to start again).leave this dialog box open
Alternatively you can save the activation request, for example to a location on your network or to a USB device.
On a computer that has an Internet connection, go to the page at and paste theManual Activation http://www.red-gate.com/activate
activation request into the box under . Step 1

Click .Get Activation Response
When the activation response is displayed under , copy all of it.Step 2
Alternatively you can save the activation response to a .txt file.
On the computer where the licensing and activation program is running, paste the activation response or if you saved it, load it from the
file.

http://www.red-gate.com/activate

6.

7.

8.

Click .Finish
The page is displayed.Activation successful
Click .Close
You can now continue to use your product.

1.

Deactivating

You can use the deactivation tool to deactivate a serial number so you can reuse it on another computer. You can also use it to deactivate serial
numbers for products you've uninstalled.

To deactivate a serial number, your computer must have an internet connection. If you can't deactivate a serial number, you can request
 for that serial number. You may need to do this if:additional activations

your computer doesn't have an internet connection
your network uses a proxy server that interrupts contact between the product and the Redgate activation server
your serial numbers aren't displayed in the deactivation tool (eg if the product installation is corrupted)

Deactivating using the command line

Open a command prompt, navigate to the folder where your product executable file is located and run a command with the following syntax:

<productEXE> /deactivateSerial

For example:

sqlcompare /deactivateSerial

The box is displayed. Follow the instructions below.Deactivate Serial Numbers dialog

Deactivating using the GUI

To deactivate your products:

Start the deactivation tool. To do this, either the tool and run the executable file, or on the menu of the product, click download Help Deac
.tivate Serial Number

The Deactivate Serial Numbers dialog box is displayed. For example:

This page applies to several Redgate products, so the screenshots below may not match your product.

When you deactivate a serial number for a bundle of products, all the products in the bundle are deactivated. For information about
what products are in your bundle, see .Bundle history

http://www.red-gate.com/requestactivations
http://www.red-gate.com/requestactivations
http://downloads.red-gate.com/deactivate.zip
https://documentation.red-gate.com/display/XX/Bundle+history

1.

2.

3.

If you're running the executable file, the dialog box displays all the serial numbers for Red Gate products that have been activated on
your computer.
If the serial number is for a bundle, all the products in the bundle are displayed under Associated products.
Select the serial number you want to deactivate and click Deactivate.
Your deactivation request is sent to the Red Gate activation server.
When your deactivation has been confirmed, the Deactivation successful page is displayed. For example:

3.

4.

If there's a problem with your deactivation request, an error dialog box is displayed. For information about deactivation errors and how to
resolve them, see Troubleshooting licensing and activation errors.
Click Close. You can now use this serial number on a different computer.

https://documentation.red-gate.com/display/XX/Troubleshooting+licensing+and+activation+errors

Troubleshooting licensing and activation

This page provides information about errors you may encounter when you activate Redgate products:

The number of activations for this serial number has been exceeded
This serial number has been disabled
This serial number was for a trial extension
This serial number is not registered with the activation server
This serial number is not for <product name>
This serial number is not for this version
The activation request is in the wrong format
The activation request contains an invalid machine hash
The activation request contains an invalid session
The activation request contains an invalid serial number
The activation request contains an invalid product code or version number
There's a problem deactivating your serial number
This serial number is not activated on this computer
Products not activated on this computer

The number of activations for this serial number has been exceeded

This error message is displayed when a serial number is activated on more computers than the number of licenses that were purchased for that
serial number.

When you purchase products from Redgate, we send you an invoice that includes your serial numbers. The serial numbers enable you to activate
the software a number of times, depending on how many licenses you purchased and the terms in the . When this limit islicense agreement
reached, you will see this error message.

To fix the problem, you can:

deactivate the product on another computer to free up a license
purchase more licenses
request additional activations for your serial number

This serial number has been disabled

This error message is displayed when you try to activate a product using a serial number that Redgate has disabled.

When you upgrade a product, your existing serial numbers will be disabled and we will issue new ones with your invoice. If you cannot find your
new serial numbers, you can review them at http://www.red-gate.com/myserialnumbers

Redgate will also disable serial numbers for non-payment of invoices or breach of the terms in the . If you think we havelicense agreement
disabled your serial numbers in error, email licensing@red-gate.com

This serial number was for a trial extension

This error message is displayed when you have requested a trial extension and you try to reuse the serial number that was provided for the trial
extension; trial extensions can be used one time only.

To continue using the product, you need to .purchase it

This serial number is not registered with the activation server

This error message is displayed when the serial number you entered does not exist on the Redgate activation server.

To find out your serial numbers, check your invoice or go to http://www.red-gate.com/myserialnumbers

This serial number is not for <product name>

This error message is displayed when the serial number you entered is not for the product you are trying to activate.

To find out your serial numbers, check your invoice or go to http://www.red-gate.com/myserialnumbers

http://www.red-gate.com/licensing
https://documentation.red-gate.com/display/XX/Deactivating
http://www.red-gate.com/purchase
http://www.red-gate.com/moreactivations
http://www.red-gate.com/myserialnumbers
http://www.red-gate.com/licensing
http://www.red-gate.com/purchase
http://www.red-gate.com/myserialnumbers
http://www.red-gate.com/myserialnumbers

This serial number is not for this version

This error message is displayed when the serial number you entered is for a different version of the product you are trying to activate.

If the serial number is for an older version of the product, and you don't have that version installed on your computer, you can download it from
the .Release notes and other versions page

If you want to upgrade to the latest version of the product, go to the to get a quote or purchase an upgrade, or email Upgrade center sales@red-g
.ate.com

The activation request is in the wrong format

This error message is displayed:

if your internet connection does not allow SOAP requests.
Try using manual activation; on the error dialog box, click , and then follow the instructions that are displayed.Activate Manually
if you are activating by email and there is a problem with the format of the activation request.
Check that you copied and pasted all of the activation request.
Alternatively, try using manual activation. Go to and paste your activation request under .http://www.red-gate.com/activate Step 1
when you are using manual activation and there is a problem with the format of the activation request. If the format is incorrect, for
example part of the request is missing, the Redgate activation server cannot process the request.
Check that you copied and pasted all of the activation request.

For more information about activating manually, see . Manual activation

The activation request contains an invalid machine hash

This error message is displayed:

if your internet connection does not allow SOAP requests.
Try using manual activation; on the error dialog box, click , and then follow the instructions that are displayed. ForActivate Manually
more information, see .Manual activation
when you are using manual activation and there is a problem with the format of the element in the activation request. The machinehash

 is a checksum of attributes from your computer. We use the to identify computers on which our productsmachinehash machinehash
have been activated. If the format of the element is incorrect, the Redgate activation server cannot process the request. machinehash
Check that you copied and pasted the activation request correctly.

The activation request contains an invalid session

This error message is displayed:

if your internet connection does not allow SOAP requests.
Try using manual activation; on the error dialog box, click , and then follow the instructions that are displayed. ForActivate Manually
more information, see .Manual activation
when you are using manual activation and there is a problem with the format of the activation request. If the format of the elemensession
t is incorrect, the Redgate activation server cannot process the request.
Check that you copied and pasted the activation request correctly.

The activation request contains an invalid serial number

This error message is displayed:

if your internet connection does not allow SOAP requests.
Try using manual activation; on the error dialog box, click , and then follow the instructions that are displayed. ForActivate Manually
more information, see .Manual activation
when you are using manual activation and there is a problem with the format of the activation request. If the format of the serial number is
incorrect, the Redgate activation server cannot process the request.
Check that you copied and pasted the activation request correctly.

http://www.red-gate.com/upgrade
http://www.red-gate.com/activate
https://documentation.red-gate.com/display/XX/Activating#Activating-Manualactivation
https://documentation.red-gate.com/display/XX/Activating#Activating-Manualactivation
https://documentation.red-gate.com/display/XX/Activating#Activating-Manualactivation
https://documentation.red-gate.com/display/XX/Activating#Activating-Manualactivation

The activation request contains an invalid product code or version number

This error message is displayed:

if your internet connection does not allow SOAP requests.
Try using manual activation; on the error dialog box, click , and then follow the instructions that are displayed. ForActivate Manually
more information, see .Manual activation
when you are using manual activation and there is a problem with the format of the activation request. If the product code or version
numbers are incorrect, the Redgate activation server cannot process the request.
Check that you copied and pasted the activation request correctly.

There's a problem deactivating your serial number

This error message is displayed if your computer is not connected to the internet or your internet connection does not allow SOAP requests. You
cannot deactivate a serial number if your computer does not have an internet connection.

Try deactivating again later. If the problem persists, contact your system administrator.

If you require more activations because you cannot deactivate your serial number, you can request them on the page.Request Extra Activations

This serial number is not activated on this computer

This error message is displayed when you try to deactivate a serial number that has not been activated on your computer.

If you think the product installation on your computer is corrupt, you can try re-activating the product, and then deactivating the product again.

If you require more activations because you cannot deactivate your serial number, you can request them on the page.Request Extra Activations

Products not activated on this computer

This error message is displayed when you try to deactivate a serial number for a bundle of Redgate products and those products were not
activated on your computer.

If you think the product installation on your computer is corrupt, you can try re-activating the product, and then deactivating the product again.

If you require more activations because you cannot deactivate your serial number, you can request them on the page.Request Extra Activations

https://documentation.red-gate.com/display/XX/Activating#Activating-Manualactivation
http://www.red-gate.com/moreactivations
http://www.red-gate.com/moreactivations
http://www.red-gate.com/moreactivations

Upgrading

Minor releases are free for all users. For example, if you have a license for version 7.0 of a product, you can upgrade to version 7.1 at no cost. W
hen you download and install a minor release, the product is licensed with your existing serial number automatically.

Major releases are free for users with a current Support and Upgrades contract. For example, if you have a license for version 7 of a product, you
can upgrade to version 8 at no cost. When you download and install a major release, the product is licensed with your existing serial number
automatically.

If you don't have a current Support and Upgrades contract, installing a major release will start a free 14-day trial. You'll need to buy a new license
and activate the product with your new serial number.

To check whether you have a current Support and Upgrades contract or see the cost of upgrading to the latest major version of a product:

visit the Upgrade Center
email sales@red-gate.com
call:

1 866 733 4283 (toll free USA and Canada)
0800 169 7433 (UK freephone)
+44 (0)870 160 0037 (rest of world)

To check the latest version of a product, see . Current versions

How to upgrade

You can download the latest version of a product using Check for Updates, the Upgrade Center, or the Redgate website.

If you download the latest version from the Upgrade Center or our website, you need to run the installer to upgrade the product.

If you use Check for Updates, the installer runs automatically.

Some Redgate products are available as part of bundle. You can select which products you want to upgrade when you run the
installer.

You can install the latest version of any product (other than SQL Backup Pro) on the same machine as the previous version. Formajor
example, you can run version 9 and version 10 in parallel. However, installing a release will upgrade the existing installation.minor

To revert to an earlier version, uninstall the later version, then download and install the version you want from the Release notes and
other versions page. You can use a serial number for a later version to activate an earlier version.

https://www.red-gate.com/Dynamic/UpgradeCenter/SerialNumberEntry
https://documentation.red-gate.com/display/XX/Current+versions
https://documentation.red-gate.com/display/XX/Using+Check+for+Updates
https://www.red-gate.com/Dynamic/UpgradeCenter/SerialNumberEntry
http://www.red-gate.com/products/

1.
2.
3.
4.

1.
2.
3.
4.

Upgrading to ANTS Memory Profiler 7

Summary

The new Summary in ANTS Memory Profiler 7 includes information which we think you will find more useful when trying to trace memory
problems. This means that some of the information shown on the ANTS Memory Profiler 6 summary is no longer available, or has been moved.

The following list explains where to find information shown on the Summary in previous versions of ANTS Memory Profiler, in ANTS Memory
Profiler 7:

Filters

The filter panel has been removed from the summary because filters have no effect on the summary (they didn't in version 6, either). The filter
panel is available on other parts of the workflow, however.

Classes with largest size (in the current snapshot)

This information is available in the pie chart.Largest classes

Classes with most instances (in the current snapshot)

Switch to the and then sort it by .Class List Live Instances

Large object heap details

Free space on all .NET heaps: On the Summary, in the .NET and unmanaged memory section, see Unused memory allocated to .NET
Largest free block: On the Summary, in the Memory fragmentation section, see Largest fragment.
Max. size of new object (approx.): This information is no longer available, because it is not generally useful.

Largest growth in size (comparison)

Switch to the , and then sort it by .Class List Size diff

Largest growth in instances (comparison)

Switch to the , and then sort it by .Class List Instance diff

Large object heap changes

Change in free space: This information is no longer available from ANTS Memory Profiler because it is rarely useful, but you can
calculate it.

Switch the current snapshot to an earlier snapshot (which you will use as baseline).
On the , in the section, note the value given for .Summary .NET and unmanaged memory Unused memory allocated to .NET
Switch to the later (comparison) snapshot.
Subtract the from the first value.Unused memory allocated to .NET

Change in largest free block: This information is no longer available from ANTS Memory Profiler because it is rarely useful, but you can
calculate it.

Switch the current snapshot to an earlier snapshot (which you will use as baseline).
On the , in the section, note the value given for .Summary Memory fragmentation Largest fragment
Switch to the later (comparison) snapshot.
Subtract the from the first value. Largest fragment

Change in max. size of new object: This information is no longer available, because it is not generally useful.

Filters

Filter panel

This is now shown at the bottom of the Class List, Instance Categorizer, and Instance List. The filter panel can be collapsed when not needed
using the arrow.

Behavior when multiple filters are selected

In ANTS Memory Profiler 6 and earlier, when you enable more than one filter, there was normally an 'AND' relationship between most filters: only
objects matching all of the filters were shown. There was one exception, however: when filtering by reference from more than one class or
namespace, objects matching either filter were shown (an 'OR' relationship).

In ANTS Memory Profiler 7, there is an AND relationship between all filters. If you filter by reference from more than one class or namespace, only
objects which are referenced by all of the selected classes/namespaces are shown.

Process filter

For applications using more than one process, the filter is no longer on the Filters panel. On the Summary and the Class List, select theProcess
process you want to view by using the dropdown list beneath the timeline. The process selected by default is the process that started first.

Class Reference Explorer

The former Class Reference Explorer has been replaced in the workflow by the . The Instance Categorizer's default Instance Categorizer Catego
view takes the objects which account for 60% of the memory usage by the class, and then categorizes them by the path whichrized references

keeps those objects in memory. We hope that you will find this more useful.

If you would prefer to use the old Class Reference Explorer, switch the to view.Instance Categorizer All references

Object Retention Graph

The Object Retention Graph is now called the . This name change is only for technical accuracy. The only change inInstance Retention Graph
the Instance Retention Graph is that field values are now available in the graph.

WPF support

In ANTS Memory Profiler 6, a property that is set as a dependency property was not shown in the properties for the class it was associated with.
In ANTS Memory Profiler 7, dependency properties are shown on the list of properties.

Using Check for Updates

The Check for Updates service checks whether a more recent version of the product is available to download. To use the service, your computer
must have a connection to the internet. If your internet connection uses a proxy server, make sure your web browser connection settings are
configured correctly.

To check for updates for a Redgate product, on the Help menu, click Check for Updates. Any available updates are listed:

To view the full release details in your default web browser, click .More information

To get the update, click Download and Install. If you have a choice of updates, choose by selecting Install this upgrade, and then click Downlo
ad and Install.

About the Check for Updates service

When you start the application, the Check for Updates service informs you automatically when there are updates available:

This page applies to several Redgate products, so the screenshots below may not match your product.

The Check for Updates service doesn't work with automatic configuration scripts.

The installer will ask you to close the program. If you're upgrading an add-in, you'll also be asked to close the host program (SQL
Server Management Studio, Visual Studio or Query Analyzer).

If you don't want to receive these notifications for the product, clear the check box.Check for updates on startup

If you don't want the Check for Updates service to inform you about a particular update again, select the Don't tell me about this version again
check box. The Check for Updates service will still inform you of new updates when they become available.

Troubleshooting Check for Updates errors

For details about how to use the Check for Updates service, see .Using Check for Updates

Error: There is a problem saving the download file to your computer

This error message is displayed if:

You don't have enough disk space

The Check for Updates service downloads the updates to the location defined by the environment variable, or the variable if the RGTEMP TMP R
 variable doesn't exist.GTEMP

If you don't have enough disk space, you can change the environment variable to a location with more space.

There's a problem with permissions on your computer

The Check for Updates service downloads the updates to the location defined by the environment variable, or the variable if the RGTEMP TMP R
 variable does not exist. If your user account doesn't have permissions to write to the location specified by these environment variables,GTEMP

contact your system administrator.

There's a problem with the download file on the Redgate web server

Contact .Redgate support

Error: There is a problem with the network connection

This error message is displayed if:

Your internet connection dropped while the Check for Updates service was downloading the updates

Try checking for updates again later.

Proxy authentication failed

Check your user name and password.

Your computer can't connect to the Check for Updates service.

Contact your system administrator. If you're using a proxy server, check it's configured correctly (see Control Panel > Internet Options >
Connections).

There's a problem with the download file on the Redgate web server

Contact .Redgate support

Changing the or the variables will affect other programs that use those variables. The variable affects onlyRGTEMP TMP RGTEMP
Redgate programs. For information about environment variables, see your Windows documentation.

The Check for Updates service doesn't work with automatic configuration scripts.

https://documentation.red-gate.com/display/XX/Using+Check+for+Updates

Understanding memory problems

Most types of memory problem that you encounter are one of the following kinds. Working out which kind of problem you have may help you start
to locate and resolve your problem.

Managed memory leaks
The typical symptom of a memory leak is that the performance degrades while the program runs; performance recovers on restart and
then degrades again. The amount of bytes in the .NET heap increases.
Unmanaged object leaks
The performance degrades while the program runs; this recovers on restart and then degrades again. The number of private bytes (the
amount of real and paged memory requested by the program) in use often increases at a greater rate than the number of bytes in the
.NET heap.
Fragmentation of the large object heap
The main symptom of fragmentation is that exceptions are thrown even though there is sufficient space on the .NET heap.OutOfMemory
Large RAM footprint
Some programs need to use a lot of memory. There is little specific advice that can be given about this, since the best approach to
reducing the amount of memory used will depend on your program's requirements. Using a profiler may give you suggestions for where
to optimize code by showing which parts of your program are using the most memory.

If you are not familiar with memory profiling, you might find our useful before you start. .NET Memory Primer

1.
2.

1.
2.
3.

1.
2.
3.
4.

Memory management primer

This page is an overview of .NET memory management. It should give you enough information about how .NET allocates objects into memory to
start using ANTS Memory Profiler.

Large and small objects

.NET handles large objects and small objects differently:

Large objects are all objects over 85k, and double (multidimensional) arrays over 8k.
All other objects are considered small objects.

The small object heaps

Small objects are stored in the small object heaps.

Objects are allocated first to the generation 0 (Gen 0) heap.

When the Gen 0 heap is full, the .NET garbage collector runs. The garbage collector performs two tasks:

It disposes of all objects on the Gen 0 heap that are no longer needed.
It moves objects that are still needed to the generation 1 (Gen 1) heap.

This leaves the Gen 0 heap empty, ready for new objects to be allocated on it.

Eventually, the Gen 1 heap becomes full. When this happens, the garbage collector runs again, and it performs three tasks:

It disposes of all objects on the Gen 1 heap that are no longer needed.
It moves objects that are still needed to the generation 2 (Gen 2) heap.
It performs a garbage collection on Gen 0, as before.

If Gen 2 becomes full, a full garbage collection takes place. When this happens, the garbage collector performs four tasks:

It disposes of all objects on the Gen 2 heap that are no longer needed.
It performs a garbage collection on Gen 1, as before.
It performs a garbage collection on Gen 0, as before.
It disposes of objects on the large object heap that are no longer needed (see below).

If insufficient memory has been freed at the end of a full garbage collection, an OutOfMemory exception is thrown.

Note that whenever the garbage collector runs on any of the small object heaps, the heaps are compacted, so that the available space is used
efficiently.

By using this generational approach, recently-allocated objects should be disposed sooner than older objects, which are presumed to be being
kept in memory for a reason. It also ensures that full garbage collections, which have the greatest impact on an application's performance, happen
as infrequently as possible.

The large object heap

The large object heap is where large objects are stored.

There is only one large object heap, and objects stored on it are only tidied-up during a full garbage collection.

Importantly, because compacting the large object heap would adversely affect your application's performance, the large object heap is never
compacted. This means that the heap can fragment over time. If a new object, which is bigger than an existing fragment, needs to be allocated on
the heap, the large object heap will grow so that the new object can be allocated to the end of the heap. Eventually, the fragmentation may mean
that there is insufficient memory to allocate new large objects.

This is often a major cause of .NET memory problems, and it can be one of the most difficult issues to solve. For more information, see how to
.check for large object heap fragmentation

ANTS Memory Profiler forces a garbage collection when you take a snapshot. This is because some of the memory counters that ANTS
Memory Profiler obtains from Windows are only accurate immediately after a garbage collection. For this reason, you will generally not
see any objects on the Gen 0 heap during profiling. This behavior will not affect the results that you obtain, because an object which
only exists for a short time on Gen 0, and which is never promoted to Gen 1, will never be the cause of a .NET memory problem.

(If you do see objects on the Gen 0 heap, it is because the .NET garbage collector does not always behave in the way described in this
simplified overview. For example, pinned objects, objects on the finalizer queue and objects created during the garbage collection might
remain on the Gen 0 heap after a snapshot. Again, this is never a problem that would affect the results obtained.)

Further information on large object heap fragmentation

The dangers of the large object heap
http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
Large object heap uncovered (MSDN)
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
Understanding garbage collection in .NET
http://www.simple-talk.com/dotnet/.net-framework/understanding-garbage-collection-in-.net/

Managed memory leaks

The garbage collector calculates whether or not an object can be disposed from one of the heaps by creating a graph (similar to the Instance
Retention Graph in ANTS Memory Profiler), which shows how the object is referenced by other objects.

The graph starts from the GC roots. A GC root can be any storage slot to which the running program has access, such as a local variable, static
variables, or even a CPU register. (Strictly speaking, the object itself is not the GC root; the storage slot that holds the reference to the object is
the GC root.)

The GC roots will reference objects, which in turn typically reference other objects (through a member variable). If an object is not being
referenced by anything, it cannot be reached by your program, and will be removed by the garbage collector.

http://www.simple-talk.com/dotnet/.net-framework/the-dangers-of-the-large-object-heap/
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://www.simple-talk.com/dotnet/.net-framework/understanding-garbage-collection-in-.net/

1.
a.

b.

2.
a.

b.

c.

d.

In the graph above, is referenced by:System.String

The key of .System.Collections.Hashtable+bucket[2]
System.Collections.Hashtable+bucket[] is referenced by the property of buckets System.Collections.Hashtab

.le
System.Collections.Hashtable is a GC root because it is referenced by the static variable SharedPerformanceCounte

.r.categoryDataTable
The property of .categoryName System.Diagnostics.SharedPerformanceCounter

System.Diagnostics.SharedPerformanceCounter is referenced by the property of sharedCounter System.Diagnos
 (The green background means that istics.PerformanceCounter. System.Diagnostics.PerformanceCounter

disposable, but not yet disposed.)
System.Diagnostics.PerformanceCounter is referenced by the property of _instance System.Data.ProviderBase

..DbConnectionPoolCounters+Counter
System.Data.ProviderBase.DbConnectionPoolCounters+Counter is referenced by the pHardConnectsPerSecond
roperty of the base class in .DbConnectionPoolCounters System.Data.SqlClient.SqlPerformanceCounters
System.Data.SqlClient.SqlPerformanceCounters is a GC root because it is referenced by the static variable SqlPerf

.ormanceCounters.SingletonInstance

Because references hold objects in memory, you have to be careful to ensure that references to objects are removed when no longer needed. A
common mistake, for example, is to leave an event handler (such as a timer) referencing an object. This will stop the garbage collector from
disposing the object. The result is that an object which should have been in memory only briefly can end up leaked onto the Gen 2 heap.
Importantly, in this scenario, all of the objects that the object references will also be on the Gen 2 heap. This has significant implications on how

: the objects referenced by the leaked object will often be more obvious than the leaked object itself, so you needyou use ANTS Memory Profiler
to start by investigating those referenced objects (which are most commonly strings or byte arrays).

The typical symptom of a memory leak is that the performance degrades while the program runs but the amount of memory used recovers on
restart and then degrades again.

See .finding and fixing a memory leak

Further information on finding leaks in managed code

Identify and prevent memory leaks in managed code (MSDN)
Garbage Collection: Automatic Memory Management in the Microsoft .NET Framework (MSDN)
Memory Management in .NET

Unmanaged memory leaks

Managed .NET code may interoperate with unmanaged code when some COM objects or native-code DLLs are invoked.

Leaks caused by unmanaged objects are more complex to identify, because ANTS Memory Profiler cannot provide detailed information about
unmanaged usage. By understanding and interpreting the data shown by ANTS Memory Profiler, however, you might gain some ideas about
where to look for these leaks.

The main indication of an unmanaged memory leak is when the number of private bytes (the amount of real and paged memory requested by the
program) increases while the number of bytes in the .NET heap does not grow as quickly. You may be able to find the source of the problem by
looking for .NET objects whose instance count is increasing, or by looking for objects on the finalizer queue that have not been disposed.

See .checking for unmanaged memory usage

http://msdn.microsoft.com/en-gb/magazine/cc163491.aspx
http://msdn.microsoft.com/en-us/magazine/bb985010.aspx
http://www.c-sharpcorner.com/UploadFile/tkagarwal/MemoryManagementInNet11232005064832AM/MemoryManagementInNet.aspx

Further information on finding leaks in unmanaged code

Finding unmanaged memory leaks

Webinar

This page should have given you enough knowledge to start using ANTS Memory Profiler. If you are interested in learning more detail than this
brief overview can provide, see our webinar .5 Misconceptions about .NET Memory Management

http://esmithy.net/2007/06/25/finding-unmanaged-memory-leaks/
http://www.red-gate.com/products/dotnet-development/ants-memory-profiler/webinars/5-memory-management-misconceptions

1.
2.
3.

Understanding ANTS Memory Profiler

Recommendations

Finding your memory problem may require some detective work; we recommend that, before using ANTS Memory Profiler, you should have the
following:

Good knowledge of your code.
An idea of where in your code your problem might be occurring.
An understanding of how .NET memory management works.

If you have a , it is likely that you are leaking more than one object:leak in managed memory

Your object, which is kept in memory because of this leak.
Objects in classes from the CLR itself, which are referenced by your object.

If your leaked object contains text, for example, at least one System.String object will also be kept in memory. Your object may only be a few
bytes large, but it may be holding a significant amount of memory in classes from the CLR.

Conversely, this means that when you are looking for leaked objects in your code using ANTS Memory Profiler, it is often useful to start by looking
at these classes inherited from the CLR, rather than starting from your own classes.

Remember also that no program can decide whether or not an object is a leak, because it depends on the nature of the program you are profiling.
If a large number of strings are kept in memory for a long time in word processing software, this may not be an indicator of a problem. However, if
strings from a dialog box that has been closed are kept in memory in a graphics program, this could be a good place to start the investigation.
Ultimately, therefore, you will need to use knowledge of your code to interpret the information shown in ANTS Memory Profiler.

Setting up and running a profiling session

When you start ANTS Memory Profiler, or when you start a new profiling session, the ANTS Memory Profiler Settings dialog box is displayed.

Application settings

On the tab, select the type of application you want to profile from the list. The settingsApplication settings Choose application type to profile
available change depending on your selection:

.NET executable
ASP.NET web application (hosted in IIS or web development server)

Silverlight 4 or later browser application (ANTS Memory Profiler 7 only supports Silverlight 4)
Windows service
COM+ server
XBAP (XAML Browser Application)
Attach to a .NET 4 process

You can also start ANTS Memory Profiler from the .Visual Studio add-in

Charting options

Use the tab to choose which performance counters you would like to record. See for moreCharting options Setting up performance counters
information.

Special requirements apply to .SharePoint

1.
2.
3.
4.

5.
6.
7.

8.
9.

Profiling an executable

Start ANTS Memory Profiler. If it is already running, on the menu, click ...File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings .NET executable
Enter the path to the .NET executable that you want to profile.
You should normally leave and selected, although monitoring the disposal ofProfile child processes Monitor disposal of objects
objects may reduce the performance of your application.
If required by your application, specify its . By default, the directory containing the .NET executable is used.Working directory
If required by your application, specify any that should be supplied to the .NET executable at launch.Arguments
If required, .change the performance counters to record

Click .Start Profiling
Check whether there are any memory problems.

Profiling a web application

ANTS Memory Profiler can profile ASP.NET web applications. The application you want to profile must be on the same machine on which you are
running the profiler.

Web applications are profiled in Microsoft Internet Explorer, even if that is not your preferred browser. This is because ANTS Memory Profiler
uses the low-level data exposed by Internet Explorer.

The set-up steps depend on what you are profiling:

an ASP.NET application in IIS
an ASP.NET application in IIS Express
an ASP.NET application in web development server
SharePoint

1.
2.

3.

4.

5.

6.

7.
8.
9.

10.

Profiling on IIS

To profile ASP.NET applications running on IIS, on the dialog box, perform the following steps:ANTS Memory Profiler Settings

Start ANTS Memory Profiler. If it's already running, on the menu, click .File New Profiling Session
Under Choose application type to profile, select .ASP.NET web application (IIS)

Next to , click the ASP.NET web application (URL)

 refresh icon.
ANTS Memory Profiler displays a list of applications currently running on IIS. Choose the application you want to profile.
Normally, you'll want to keep and selected, but this can affect your application'sProfile child processes Monitor disposal of objects
performance.
If needed, choose an to profile on. Unused port
This means that IIS won't need to restart, but it won't work if you've hard-coded a specific port in your web application.
(This option is not available in IIS 5.)
With IIS 6 and 7, your web application will run under the Windows Local System user by default.
If needed, change the user account your application will run under by selecting . TheManually specify ASP.NET account details
specified user must have administrator privileges and permission to read from %ProgramFiles%\Red Gate\ANTS Memory Profiler
7\RedGate.Memory.Core.dll
With IIS 5, your web application will always run under the ASPNET account. Make sure that the ASPNET account has permission to read
from %ProgramFiles%\Red Gate\ANTS Memory Profiler 7\RedGate.Memory.Core.dll
The notice confirms the URL that will be used for profiling, including any unused port you have set.Profiling will use URL
If needed, .change the performance counters to record
Click

.
Check whether there are any memory problems.

1.
2.
3.

4.
5.

6.

Profiling on IIS Express

To profile ASP.NET applications running on IIS Express:

Start ANTS Memory Profiler. If it's already running, on the menu, click .File New Profiling Session
Under , select .Choose application type to profile ASP.NET web application (IIS Express)
Set the for the web application that you want to profile.You can specify the path directly to the webWeb application path or config file
application, or to the site's ApplicationHost.config file.
If you choose the ApplicationHost.config file, a list of available applications configured in that file is displayed. Select the application you
want to profile.

If needed, .Setting up performance counters
Click

.
IIS Express starts, and the web application opens in Internet Explorer.

Check whether there are any memory problems.

This page only applies to ANTS Memory Profiler 7.3 and later.

Normally, you'll want to keep and selected. However, monitoring theProfile child processes Monitor disposal of objects
disposal of objects can affect the performance of your application.

You can interact with the application using any web browser, but closing the Internet Explorer window opened by ANTS
Memory Profiler will end your profiling session.

1.
2.

3.
4.

5.
6.

7.
8.

9.

Profiling on web development server

To profile ASP.NET applications running on the web development server, on the dialog box, perform theANTS Memory Profiler Settings
following steps:

Start ANTS Memory Profiler. If it's already running, on the menu, click .File New Profiling Session
Under Choose application type to profile, select .ASP.NET web application (web development server)

In the browse to your application.ASP.NET web application (path),
Normally, you'll want to keep Profile child processes and Monitor disposal of objects selected, but this can affect your application's
performance.
In the box, enter the virtual directory where your application will start.Web server virtual directory
In the box, select the port where your application will start.Port to bind web server to
For example, if the virtual directory is and the port is , the URL profiled will bestaging 8013 http://localhost:8013/staging/
Specify the .NET version which the web application is compiled against.
Click

.
Check whether there are any memory problems.

1.
2.
3.

4.
5.

6.

7.
8.

9.

1.
2.

3.

Profiling SharePoint

ANTS Memory Profiler can profile managed code that runs on a Microsoft SharePoint 2007 or 2010 server.

ANTS Memory Profiler 7.3 and later
ANTS Memory Profiler 7.2 and earlier
Troubleshooting

ANTS Memory Profiler 7.3 and later

To profile SharePoint:

Start ANTS Memory Profiler. If it's already running, on the menu, click .File New Profiling Session
Under Choose application type to profile, selectSharePoint web application (IIS).
Click

 to load a list of SharePoint sites that are currently running into the dropdown.
Choose the site that you want to profile.
Normally, you'll want to keep and selected, but this can affect your application'sProfile child processes Monitor disposal of objects
performance.
Choose the port to profile your application on:

If your application doesn't bind to a specific port, select and choose a port that is not used by IIS.Unused port
If your application must use the port it currently runs on, select .Original port (IIS will restart)

If IIS does not restart correctly, use IIS Manager to stop the website until you have finished profiling.
The port where the application will be profiled is displayed at the bottom of the ANTS Memory Profiler Settings dialog box.
If needed, select and enter the User name, Password, and Domain.Manually specify ASP.NET account details

The Profiling will use URL notice confirms the URL that will be used for profiling, including any unused port you have set.
If needed, .change the performance counters to record
Click

.
Check whether there are any memory problems.

ANTS Memory Profiler 7.2 and earlier

ANTS Memory Profiler can profile managed code that runs on a Microsoft SharePoint server because Microsoft SharePoint 2007 is implemented
as an ASP .NET web application.

Though ANTS Memory Profiler was not designed to support SharePoint 2010 profiling, a workaround exists that may let you profile managed
code running on a SharePoint 2010 server. For details, see .Profiling SharePoint 2010

To profile Sharepoint 2007, follow the procedure for .profiling an ASP.NET web application on IIS

If you encounter difficulties, the most likely cause is that ANTS Memory Profiler cannot read from the directory to which SharePoint is writing data.
To fix this:

Create a temporary directory.
If you are not on a sensitive system, allow full read/write access to this temporary directory to all users.
If you are on a sensitive system, ensuring that the local system account has read/write access should suffice.
Use to add a new environment variable. The variable must be called and the value is the path to theControl Panel RGIISTEMP
temporary directory you just created.

For more information, see .Profiling SharePoint with ANTS Performance Profiler 5.2 (Simple Talk)

Troubleshooting

If you experience problems, see .Troubleshooting SharePoint profiling

ANTS Memory Profiler profiles your web application as the Windows Local System user. If the Windows Local System user
doesn't have the permissions to use your SharePoint site collection, enter the credentials of a user with the required
permissions. This user must also be an administrator on the computer ANTS Memory Profiler runs on.

With IIS 5, your web application will always run under the ASPNET account. Make sure that the ASPNET account has
permission to read from %ProgramFiles%\Red Gate\ANTS Memory Profiler 7\RedGate.Memory.Core.dll

http://www.simple-talk.com/dotnet/.net-tools/profiling-sharepoint-with-ants-performance-profiler-5.2/

SharePoint's API is still partly unmanaged; if you have been experiencing memory problems with SharePoint, you might find the
following MSDN articles helpful:

Common Coding Issues When Using the SharePoint Object Model
Using disposable Windows SharePoint Services objects

http://msdn.microsoft.com/en-us/library/bb687949.aspx
http://msdn.microsoft.com/en-us/library/aa973248.aspx

1.

2.

3.

4.

Profiling SharePoint 2010

ANTS Memory Profiler 7.2 and earlier do not support profiling SharePoint 2010, but this workaround may let you profile managed code running on
a SharePoint 2010 server with IIS 7.

To profile SharePoint 2010 with IIS 7:

Open the IIS applicationHost configuration file.
By default, this is located in C:\Windows\system32\inetsrv\config\applicationHost.config
In the <globalModules> element, comment out the following line:
<add name="SharePoint14Module" image="C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\isapi\owssvr.dll" preCondition="appPoolName=SharePoint Central Administration
 v4;SharePoint - 80" />
Immediately below this line, add the following line:
<add name="SharePoint14Module" image="C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\isapi\owssvr.dll" preCondition="appPoolName=RGTestAppPool;SharePoint - 80" />

This sets a precondition allowing ANTS Memory Profiler to load the SharePoint server DLL. ANTS Memory Profiler will now be able to
profile code on the Sharepoint server.
Follow the instructions on .Profiling SharePoint

This page only applies to ANTS Memory Profiler 7.2 and earlier.

1.

2.
3.

4.

5.

6.
7.

8.

Profiling a Silverlight application

To profile a Silverlight application:

If your application runs in a browser, use Task Manager to kill all running processes.iexplore.exe
This makes sure that ANTS Memory Profiler attaches to the right process.iexplore.exe
Start ANTS Memory Profiler. If it's already running, on the menu, click .File New Profiling Session
Under Choose application type to profile, select .Silverlight 4+ application

If your application runs in out-of-browser mode, next to , enter:Silverlight application URL
A local path to the XAP file
A URL (pointing to localhost) of the XAP file

If your application runs in a browser, next to , enter:Silverlight application URL
A local path to the file that embeds the application
A URL (pointing to localhost) of the file which embeds the application

You should normally leave and selected, although monitoring the disposal ofProfile child processes Monitor disposal of objects
objects may affect the performance of your application.
If required, .change the performance counters to record
Click

.
Check whether there are any memory problems.

If you have problems, see or .Silverlight out-of-browser profiling stops with no results Silverlight in-browser profiling stops with no results

You can only profile Silverlight 4 or later applications. Profiling Silverlight applications requires the Silverlight 4 (or later) Internet
Explorer plugin.

ANTS Memory Profiler 7 only supports Silverlight 4 applications.

ANTS Memory Profiler 7.4 only
When profiling Silverlight browser applications, you cannot navigate to your source code using the Visual Studio add-in. See

 for how to configure your application and profiling session to work with the add-in.below

1.
2.
3.
4.
5.
6.

7.

Navigating to Silverlight source code

If you profile a Silverlight application that runs in a web browser, you cannot switch to view your source code using the ANTS Performance Profiler
Visual Studio Add-in. To navigate to your source code, configure your Silverlight application to run in , and profile the out-of-browser mode Silverlig

:ht launcher application

In Visual Studio, open the application's Project Settings and select .Enable running application out of browser
Start ANTS Memory Profiler. If it is already running, on the menu, click .File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings .NET executable
In , set the path to - e.g. .NET executable sllauncher.exe C:\Program Files (x86)\Microsoft Silverlight\sllauncher.exe
In , set the to the directory containing your Silverlight application.Startup Options Working directory
In , set the and switches to the path of the Silverlight application - e.g.Arguments /emulate /origin

/emulate:"D:\Dev\SilverlightApplication1\BinRelease\SilverlightApplication1.xap"

/origin:"D:\Dev\SilverlightApplication1\Bin\Release\SilverlightApplication1.xap"

Click .Start Profiling

A new profiling session starts, and you can navigate to your source code from profiling results, using the Visual Studio add-in.

This section only applies to ANTS Memory Profiler 7.4.

http://msdn.microsoft.com/en-us/library/dd550721%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/dd550721%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/dd550721%28v=vs.95%29.aspx

1.
2.
3.

4.

5.
6.
7.

8.

Profiling a Windows service

Start ANTS Memory Profiler. If it is already running, on the menu, click ...File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings Windows service
Next to choose the windows service from the dropdown list. Click the Windows service:

icon to refresh the list, for example, if you have started the service since the ANTS Memory Profiler Settings dialog box was displayed.
You should normally leave and selected, although monitoring the disposal ofProfile child processes Monitor disposal of objects
objects may impact the performance of your application.
If required, specify any required by the service.Arguments
If required, .change the performance counters to record
Click

.
Check whether there are any memory problems.

If you experience problems, see .Profiling a Windows service fails if the service uses a system account

1.
2.
3.

4.

5.
6.
7.
8.

9.
10.

Profiling COMplus servers

Before you start

To profile a COM+ server application correctly, set the attribute as follows:ApplicationActivation

[assembly: ApplicationActivation(ActivationOption.Server)]

If you cannot set this attribute (for example, if you do not have access to the source code), or if you set it to , youActivationOption.Library
may still be able to profile the COM+ application by profiling the client application. You should note, however, that the resulting server application:

will not be a true COM+ application and will run in the client process
will be treated by ANTS Memory Profiler as a DLL invoked by the client.

Also, you may need to make the application's code fully trusted by setting the attribute as follows:ApplicationAccessControl

[assembly: ApplicationAccessControl(false)]

Profiler settings

Start ANTS Memory Profiler. If it is already running, on the menu, click ...File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings COM+ Server
Next to choose the COM+ server application from the dropdown list. Click the COM+ server application

icon to refresh the list, for example, if you have started the server since the ANTS Memory Profiler Settings dialog box was displayed.
You should normally leave and selected, although monitoring the disposal ofProfile child processes Monitor disposal of objects
objects may impact the performance of your application.
Under , next to , choose the path to the client application.Client application Executable
If required, specify any required by the client application.Arguments
If required, .change the performance counters to record
Click

.
Use the client application to test the COM+ server application during your profiling session.
Check whether there are any memory problems.

You should not normally release the COM+ application in this trusted state.

1.
2.
3.
4.

5.
6.

7.

1.
2.
3.
4.

5.
6.
7.
8.

9.
10.

Profiling XBAPs

The procedure for profiling XBAP applications depends on whether your application is or -hosted.locally remotely

To profile a locally-hosted XBAP application

Start ANTS Memory Profiler. If it is already running, on the menu, click ...File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings XBAP (local XAML browser application)
Enter the path to the XBAP application that you want to profile.
You should normally leave and selected, although monitoring the disposal ofProfile child processes Monitor disposal of objects
objects may impact the performance of your application.
If required, .change the performance counters to record
Click

.
Check whether there are any memory problems.

To profile a remote XBAP application

Start ANTS Memory Profiler. If it is already running, on the menu, click ...File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings .NET executable
Enter the path to Microsoft Internet Explorer ().iexplore.exe
You should normally leave and selected, although monitoring the disposal ofProfile child processes Monitor disposal of objects
objects may impact the performance of your application.
If required by your application, specify its . By default, the directory containing the .NET executable is used.Working directory
If required by your application, specify any which should be supplied to the .NET executable at launch.Arguments
If required, .change the performance counters to record
Click

.
When Internet Explorer starts, navigate to the XBAP application and interact with it in the normal way.
Check whether there are any memory problems.

To profile an XBAP application, Internet Explorer must be set as your default browser and it must be closed before profiling.

1.

2.

3.

1.

2.

3.

Attaching to a process

If your application is not a .NET 4 application

Due to a limitation in previous versions of the CLR, you can only attach ANTS Memory Profiler to a .NET 4 process.

If your process runs on an older version of .NET, however, it is often possible to force it to run as .NET 4 without recompiling it. For more
information, see .Forcing your application to use .NET 4

Before you start

Before you can attach ANTS Memory Profiler to a running .NET 4 process, you must first disable concurrent garbage collection in your
application. This allows ANTS Memory Profiler to monitor garbage collections, which it cannot do if garbage collections take place in a different
thread.

Disabling concurrent garbage collection means that garbage collection will take place in the same thread as the application's thread. Note: This
may affect the performance of your application; see the notes below.

To disable concurrent garbage collection, follow the steps below:

Disabling concurrent garbage collection (If you are not attaching to a webservice running on the web development

server):

Create a new file, and copy the following XML into it:

<configuration>
 <runtime>
 <gcConcurrent enabled="false"/>
 </runtime>
</configuration>

Save this file in the same directory as the application's executable file with the same name as the executable file, but appending a .config
extension. (For example, if your application is , the configuration file must be named). sample.exe sample.exe.config
It is not necessary to rebuild your executable. The .NET CLR will automatically load the configuration file at runtime.
Run your executable and then attach ANTS Memory Profiler to it (see).Profiler settings

Disabling concurrent garbage collection (If you are attaching to a webservice running on the web development server):

Open the file, located at , in a text editor orWebDev.WebServer.exe.config %ProgramFiles%/Common Files/microsoft shared/Dev Server/
XML editor.
Under the node, insert the following text: <runtime>
<gcConcurrent enabled="false"/>
Save the WebDev config file.

For more information on concurrent garbage collection, see (MSDN)Fundamentals of garbage collection: concurrent garbage collection
.

While concurrent garbage collections are disabled, your application will run faster but may pause occasionally to allow garbage
collections to take place.
While concurrent garbage collections are disabled, the total memory footprint of your application is fractionally increased. This
is because the concurrent garbage collector would normally build a graph of unreachable objects on the other thread. This
difference should not be significant enough to alter the results shown by ANTS Memory Profiler.
You cannot attach to a .NET 4 process which is running in server garbage collection mode. If your configuration file contains <g

, delete this node.cServer enabled="true"/>

When you have finished profiling, delete the configuration file.

http://msdn.microsoft.com/en-us/library/ee787088.aspx#concurrent_garbage_collection

1.
2.
3.

4.
5.
6.

7.

Profiler settings

Start ANTS Memory Profiler. If it is already running, on the menu, click ...File New Profiling Session
On the ANTS Memory Profiler Settings dialog box, on the tab, select .Application Settings Attach to a .NET 4 process
Processes running under the same user profile as ANTS Memory Profiler are shown in a list. Processes which are not .NET 4 processes
are unavailable. To show processes from other users select . To refresh the list, clickShow processes from all users

 .
Select the process that you want to profile.
If required, .change the performance counters to record
Click

.
Check whether there are any memory problems.

If you experience problems, see .Attach to process unavailable with some anti-virus software

When you have finished profiling, delete the node.<gcConcurrent>

1.

2.

3.
4.

Forcing your application to use .NET 4

To use the 'attach to process' feature in ANTS Memory Profiler 6 and above, your assembly must use the .NET 4 CLR.

You can change the CLR version that your application uses without rebuilding it. This allows you to use 'attach to process' on applications
compiled against previous versions.

To force your application to use .NET 4:

Copy the following XML to a new file:

<configuration>
 <startup>
 <supportedRuntime version="v4.0"/>
 </startup>
</configuration>

Save the file in the same location as the application's file, adding to the 's file name. .exe .config .exe
For example, if your application is saved at , you must save the XML file as C:/Program Files/Company/Program/myApplication.exe C:/Pr

.ogram Files/Company/Program/myApplication.exe.config
Run your application as normal. .NET will automatically load the file and the application will run against .NET 4..exe.config
While the application is running, you can attach the profilers to it, as for a normal .NET 4 application.

This will only work if you have not hard-coded a reference to a specific version of .NET in your code.

If the file already exists, edit it with an XML editor to add the node.*.exe.config <supportedRuntime>

Setting up performance counters

ANTS Memory Profiler can monitor the values of a number of Windows performance counters while the application you are profiling is executing.
The values of these counters are constantly updated on the timeline during profiling.

We recommend using only the default counters. Each additional counter you monitor adds to the overhead introduced by the profiler. Adding too
many counters may cause your application to run substantially more slowly.

Choose the performance counters you want to monitor using the tab on the dialog box.Charting Options ANTS Memory Profiler Settings

Not all performance counters may be appropriate for the application type you are profiling. You can find more information about individual
performance counters in the box, including details about a counter's relevance to particular application types.Description

Comparing memory counters

There are many ways to measure memory usage. No single counter reveals a complete picture of the memory requirements of your program, and
the values of different counters are incomparable.

By default, ANTS Memory Profiler uses the Private bytes counter, because this measure is considered the most useful for most kinds of memory
problem.

Windows Task Manager shows the Private working set counter by default. The Private working set is unavailable in ANTS Memory Profiler
because it is only accurate immediately after a garbage collection.

The following table summarizes some of the main different ways of measuring memory:

Counter Description Including shared processes?
(DLLs in memory, .NET
runtime)

Including memory paged to
disk?

Private bytes Includes memory allocated (even if not in
use)

No Yes

Working set Only includes memory in use Yes No

You can add custom performance counters to the list of available counters in the tab. To do this, see Charting Options Adding custom
.performance counters

Virtual bytes Only includes memory in use Yes Yes

Private working set
(Unavailable in ANTS Memory
Profiler)

Only includes memory in use No No

Performance Monitor () has a performance counter called , which is part of the .NET CLR Memory object.perfmon.exe # Bytes in all heaps

The value of the Performance Monitor counter is often larger than the ANTS Memory Profiler counter.# Bytes in all heaps # Bytes in all heaps
The discrepancy is caused because the Performance Monitor counter includes memory allocated to the .NET heaps but# Bytes in all heaps
which is not being used, whilst the ANTS Memory Profiler only includes memory that is both allocated and in use.# Bytes in all heaps

1.
2.

3.

4.
5.
6.

Adding custom performance counters

You can add custom performance counters to the list of available counters in the tab. To do this:Charting Options

Close ANTS Memory Profiler.
Expose your performance counter to the Windows Performance Counter API using the and PerformanceCounter PerformanceCounterCa

 classes of the namespace.tegory System.Diagnostics

Create a new XML file containing the following:

<Counters>
 <Category Name="CategoryName">
 <Counter Category="CategoryName" Name="CounterName" Units="Measurement
Units">
 <Instanced />
 </Counter>
 </Category>
</Counters>

Ensure that and are the same as the names used for the and CategoryName CounterName PerformanceCounterCategory Performance
. Remove the node if your counter collects data about the computer, not only the individual process. You canCounter <Instanced />

add multiple categories and counters in the same XML file.
Save the XML file as in UserCounters.xml %LOCALAPPDATA%\Red Gate\ANTS Memory Profiler 7\.
Restart ANTS Memory Profiler.
The counters you defined are shown in the relevant category on the tab.Charting Options

For an example of how to do this, see (MSDN).PerformanceCounter class

http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx

Using the Visual Studio add-in

The ANTS Memory Profiler Visual Studio add-in allows you to:

Launch ANTS Memory Profiler from your IDE.
Switch straight to your source code from ANTS Memory Profiler.

Launching ANTS Memory Profiler from Visual Studio

Installing the add-in adds a new menu in Visual Studio.ANTS

Build your solution in Visual Studio and then select to profile the build.Profile Memory

Switching to your source code from ANTS Memory Profiler

So that ANTS Memory Profiler can identify which classes have source code, you must ensure that the .pdb file is in the same directory as the
application.

You can switch to source code from the Class List, the Instance Categorizer, the Instance List, and the Instance Retention Graph.

Classes with source code are shown in bold. You can use the find bar on the Class List to search for your class's namespace.

Right-click a class with source code to show the context menu.

To open only the source code associated with that class, select .Open with new instance of Visual Studio 20xx

It is often more useful to open the source code inside its solution. To do this, you need to already have opened the solution in Visual Studio,
before opening the context menu. On the context menu, select .Open with (Solution Name) - Microsoft Visual Studio (Visual Studio 20xx)

If you experience problems, see .Troubleshooting the Visual Studio add-in

1.
2.
3.

Strategies for memory profiling

This page contains guidelines and recommendations for common memory profiling scenarios, including some heuristics about memory usage
patterns that might indicate a memory problem. Of course, every application is different, so these guidelines only outline strategies for memory
profiling; to apply these strategies you will need a good understanding of your application.

To get the most useful results, you will need to take one or more snapshots at appropriate times. You can either do this manually, while you
interact with your application, or you can take snapshots at precisely the right moment by .modifying your code

Note that Windows Task Manager and Performance Monitor can give misleading results because of the particular memory counters they use.
Because of this, you should not try to compare results shown in ANTS Memory Profiler with these other products. For more information about
different types of memory counter, see .Setting up performance counters

Identifying types of memory problems

There are many different types of memory issue, so the first step to solving your problem is to work out what type of problem you are facing.

We recommend the following strategy:

Check for large object heap fragmentation.
.Check for a leak in unmanaged memory

.Check for a leak in, or excessively high usage of, managed memory

Checking for large object heap fragmentation

We recommend that you check for large object heap fragmentation before testing for other memory problems.

If you are not familiar with memory profiling, we recommend that before starting you read the ..NET Memory Primer

The main indicator of large object heap fragmentation is that your program throws OutOfMemory exceptions after you have been using the
application for a while, and that the timing of the exception's occurrence is not predictable.

To check for large object heap fragmentation

On the , look at the section. This shows the amount of fragmentation on the large object heap. In addition,Summary Memory fragmentation
ANTS Memory Profiler heuristically checks whether fragmentation could be causing problems for your application.

If ANTS Memory Profiler detects fragmentation, . This can be useful, for example, to find outapply the filter Objects on the large object heap
which objects are currently on the large object heap, and why they are in memory.

If the large object heap is not fragmented, we recommend that you next.check for unmanaged memory usage

How ANTS Memory Profiler identifies fragmentation problems

ANTS Memory Profiler compares the size of the largest fragment to the total available free space, and also checks how much allocated memory is
unused. For a description of the different notices displayed by ANTS Memory Profiler if fragmentation is detected, see Fragmentation notices in

.ANTS Memory Profiler 7

Solving large object heap fragmentation

Large object heap fragmentation can be one of the most difficult types of memory problem to solve, because it often involves changes to the
architecture of the application. The best approach to use will depend on the exact nature of your program:

Split arrays into smaller units so that they remain below 85kB (and so are never allocated on the large object heap).
Alternatively, you can allocate the largest and longest-living objects first (if your objects are files which are queued for processing, for
example).
In some cases, it may be that periodically stopping and restarting the program is the only option.

Information about large object heap fragmentation is not available when you profile a .NET 1.1 application.

Fragmentation notices in ANTS Memory Profiler 7

When you profile an assembly, ANTS Memory Profiler analyzes the amount of fragmentation on the Large Object Heap (LOH).

It performs the following calculations to assess whether fragmentation is causing a problem:

Fragmentation ratio = size of the largest empty block on the LOH : total size of all empty blocks on the LOH

Free space ratio = total size of all empty blocks on the LOH : total memory allocated to objects on the LOH

Depending on the result of this calculation, an appropriate message is displayed:

Memory fragmentation is restricting the size of objects that can be allocated.
(Displayed in red.)
The fragmentation ratio is less than 0.3:1.
Memory fragmentation is affecting the size of the largest object that can be allocated.
(Displayed in orange.)
The fragmentation ratio is less than 0.6:1, and greater than 0.3:1.
Memory fragmentation may be causing .NET to reserve too much free memory.
(Displayed in red.)
The free space ratio is greater than 0.7:1, and there are more than three empty blocks over 64k.
Memory fragmentation may be causing .NET to reserve too much free memory.
(Displayed in orange.)
The free space ratio is less than 0.7:1, and greater than 0.4:1, and there are more than three empty blocks over 64k.
There are many large fragments; fragmentation may become an issue over time.
(Displayed in black.)
There are more than ten empty blocks over 64k.

1.
2.

3.
4.

5.

1.
2.
3.

4.
5.
6.
7.

8.

Checking unmanaged memory usage

Before you check your application's usage of unmanaged memory, we recommend that you .check for fragmentation of the large object heap

If you are not familiar with memory profiling, you might find it helpful to read before you start.about the .NET heaps

To check for unmanaged memory usage

Set up ANTS Memory Profiler.
Click

.
Do the action that you think causes the problem (for example, open the dialog box).
Click

.
On the summary screen, look at the .NET and unmanaged memory pie chart. If there is a large amount of unmanaged usage, you should
investigate it; see .Identifying the cause of large amounts of unmanaged memory usage

If you do not have a large amount of unmanaged memory use, continue .checking managed memory use

Identifying the cause of large amounts of unmanaged memory usage

Possible causes of large amount of unmanaged memory usage include:

Graphics buffers - .see below
The .NET Common Language Runtime (CLR) itself.
The CLR itself uses unmanaged memory. If your application uses very little memory in total, the amount of memory used by the CLR may
appear to take up a large percentage of the memory in use by the application.
If the amount of unmanaged memory used in your application is less than about 40MB, the CLR is likely to be the cause. Continue checki

.ng for managed memory usage
Accessing unmanaged data through P/Invoke or COM+.
In these cases, ANTS Memory Profiler is unlikely to reveal any useful information, because it cannot profile unmanaged code.
Problems with object disposal in unmanaged code.
This is rarely the cause of a problem, but to check for this, switch to the . On the panel, switch to .Class List Filters Filter By Reference
Select , click and then select . For each class that remains in theKept in memory exclusively by... Add new item By disposed objects
Class List, click the instance categorizer icon (

), to check why instances of that class are being kept in memory.

Checking unmanaged memory usage due to graphics buffers

Switch to the .Class List
On the Filters panel, switch to the tab and select .Filter by Object Type Objects that implement
Click , then choose the appropriate graphics class for your application type:Add class / interface

For WinForms applications, choose System.Image.
For WPF applications, choose .System.Windows.Media.Imaging.BitmapImage

Switch to the and sort it by .Instance List Distance from GC Root
Look at the instances which are furthest from the GC Root. This is because leaked images are likely to be further from the root.
Use the instance retention graph to work out why each image is still in memory; see .The Instance Retention Graph
If you do not see the cause of the memory problem, and if your application is a WinForms application, repeat the steps above using Obje
cts that implement System.Windows.Media.Imaging.CachedBitmap.
If the objects that implement does not show the cause of the memory problem,System.Windows.Media.Imaging.CachedBitmap filter
repeat the steps again using .Objects that implement System.Windows.Media.ImageSource

We recommend that you do not use the instance categorizer for this investigation, because the categorization will tend to emphasize large
numbers of small images. It may not show small numbers of large images.

In the Instance List all images will appear to be the same very small size (24 bytes in the case of System.Image objects). This is
actually only the amount of managed memory used to create the pointer to the image. The image itself is in unmanaged memory, and
so ANTS Memory Profiler cannot show its size.

Checking managed memory usage

Before checking for managed memory usage, we recommend that you first and check for large object heap fragmentation use of unmanaged
.memory

If you are not familiar with memory profiling, you might find it helpful to read before you start.about the .NET heaps

There are a number of different techniques that can be used to check for managed memory usage, and, as you become more experienced at
using ANTS Memory Profiler, you will discover the best ways to profile your code. Generally, the two main investigations are:

Finding out what is using most memory.
Do this if you think that the application is using too much memory.
Finding and fixing a memory leak.
Although the .NET Garbage Collector is designed to dispose of objects so that you do not have to, mistakes in your code (or third-party
code) can lead to leaking objects. Check for a leak if you see that memory usage increases whenever you carry out a specific action
repeatedly.

1.
2.

3.

4.

5.

6.

7.
8.

1.
2.

3.

4.
5.

Finding out what is using most memory

Before finding out what is using most memory, we recommend that you first and check for large object heap fragmentation use of unmanaged
.memory

If you are not familiar with memory profiling, you might find it helpful to read the before you start..NET Memory Primer

To find out what is using most memory:

Start ANTS Memory Profiler and start profiling your application.
Use your application until the point where you are interested in its memory. For example, if you believe that a lot of memory is used when
a certain screen is displayed, use the application normally until the screen is shown.
Click

.
On the Summary, look at . The largest classes are shown in order of the amount of memory they use.Largest classes

Starting with the largest class, click each class in turn to see the instance categorizer for that class. For this analysis, you are exploring
memory usage by following references to a class, so it is not important if you do not recognize these classes.
Instances of the chosen class are grouped by the chain of references which holds them in memory, with the largest group of instances
displayed at the top of the screen. Starting with the largest category, use the explorer to look at what is keeping your selected class in
memory, reading the graph from right-to-left.
For example, is often the largest class; using the instance categorizer you can find out what is keeping strings in memory,System.String
such as an event handler.
If the largest class does not reveal interesting results, click , and try again with the next-largest class, and so on.Summary
If you still cannot see why large amounts of memory are being used after you have examined all of the largest classes by size, click Other
classes. The Class List is displayed. Sort the Class List by Live Instances, and look at the instance categorizer for the classes with the
most instances.

After using the instance categorizer to find out why instances of a class are still in memory, you might find that some instances are being kept in
memory by a type (most commonly an event handler) that should not be referencing those objects. If this happens, when viewing the instance
categorizer:

Click .Show instances on this path
The Instance List is displayed, showing the instances of the object which are retained on the path previously shown in the instance
categorizer.
Click on any instance to select it (it doesn't matter which one, because they are all on the same shortest path) then click

to display the instance retention graph.
Look for the reference that should not be there on the instance retention graph, which shows all paths holding the object in memory.
Change your code to remove the incorrect reference, and then .check that the problem is fixed

For more information, see the .Worked Example

You should not normally filter classes that you do not recognize. For example, if your code contains an array which itself contains a
large number of byte arrays, you should start by looking at those byte arrays.

1.
2.
3.

4.
5.

6.

a.
b.

c.

7.

1.
2.

3.

4.

1.
2.
3.

4.

Finding and fixing a memory leak

Before you look for a memory leak, we recommend that you first and .check for large object heap fragmentation use of unmanaged memory

If you are not familiar with memory profiling, you might find it helpful to read before you start.about the .NET heaps

Your approach to finding the source of the leak will depend on whether you have a hypothesis as to what is causing the problem.

If you think you know what is causing the problem

You may already have an idea of the action that might be causing the problem. In this case, use ANTS Memory Profiler to avoid time-consuming
trial-and-error investigations in the code.

Start ANTS Memory Profiler and start profiling your application.
Use your application until the point where you are interested in its memory.
Click

.
Cause the action or method to take place (for example, open the dialog box).
Click

.
Switch to the and try each of the following approaches to check whether the type that you suspect is the source of theClass List
problem:

Type the name of the type which you suspect is causing the problem into the search box.
On the filter panel, click . Select , click , and enter theFilter by Reference Kept in memory exclusively by Add class/interface
name of the type there.
If you know that the class should only be in memory because it is referenced only by one other class, check using the Never

 filter.referenced by
If this procedure does not reveal any problems, continue reading 'Analyzing heap usage', below.

If you do not know what could be causing the problem

Set up ANTS Memory Profiler
Click

.
When you see the graph on the timeline increase substantially, click Bytes in all heaps

twice, a few seconds apart.
Continue reading at 'Analyzing heap usage' below.

Analyzing heap usage

Our best advice for analyzing heap usage is to ensure that you perform the analysis methodically, noting the results so that you can check that
any changes made to your code have fixed the problem.

For each suspicious class (see the list below), in turn:

Show the graph.Instance Categorizer
If the class is one of yours, switch to the mode, so you can see the objects this class references.All references
Check how the class is being kept in memory by looking at classes displayed to the left of your selected class. Check especially for any
event handlers referencing your selected class.
If a path looks incorrect, switch to the to show how an instance is referenced along that path.Instance Retention Graph

Suspicious classes are:

The largest classes (see the Summary or Class List)
Classes displayed when the / are applied. Having objectsKept in memory exclusively by disposed objects by event handlers filters
in the latter is an especially good indicator of a leak (or poor coding practice).
Classes which ought not to be displayed when the and/or filters are applied.Survivors in growing classes New objects

For the largest classes, you can jump straight to the categorized references graph from the summary. You do not need to generate the
Class List every time.

1.
2.

Solving the memory leak

Once you have identified a path which is incorrect:

Break the incorrect references in your code
Retest the leak.

1.

2.

Checking that a memory leak is fixed

This page outlines how to check that a memory leak you previously identified is now fixed:

Repeat the steps you used to . If you are looking for a particular class or object, switch to , and usefind the memory leak the Class List
the

find box to locate the class or object in which you are interested.
If you have fixed the leak, the objects should not be in memory.
If an object is unexpectedly still found in memory, there are two main likely causes:

The object might be on the finalizer queue. To check, display the object on the instance retention graph, and view objects on the
finalizer queue by clearing the option on the bar above the graph. If your object is on the finalizerHide finalizer queue GC roots
queue, take another snapshot and check again: the object may be removed when the garbage collector runs.
The object may still be held in memory on a different path. The instance categorizer only shows retention along the shortest path.
If your object was being kept in memory on more than one path, you may have to break references on these other paths, too.

Working with ANTS Memory Profiler

For information on how to work with specific features in ANTS Memory Profiler, see:

Working with the timeline
Working with the Summary tab
Working with the Class List
Working with the Instance Categorizer
Working with the Instance List
Working with the Instance Retention Graph
Working with object filters

Working with basic filters
Suggestions for using filters
Filtering by object type
Filtering by reference

Using the snapshot API

Working with the timeline

The timeline shows performance counter values and instances of events related to the application you are profiling. You can use the timeline to
investigate memory profiling results for specific time periods.

The timeline shows the values for a selection of Windows performance counters. You can choose which performance counters to display before
you start profiling your application. For more information, see .Setting up performance counters

Snapshots

While you are profiling your application, click the button to record memory usage at the present moment.Take Memory Snapshot

Taking a snapshot calls the method, which runs the .NET garbage collector. ANTS Memory Profiler then displays the objects thatGC.Collect
survive the garbage collection. For more information, see the ..NET memory management primer

Select the snapshot that you are interested in as the snapshot and select a snapshot to compare it with as the snapshot.Current Baseline

You can name a snapshot to make it easier to identify. To name a snapshot, click

next to its name, and type the new name, followed by the Enter key. The name is shown on the snapshot's tooltip and in the / Baseline: Current:
combo boxes beneath the timeline.

Adjusting the time scale

You can change the time scale to view performance-counter data in more or less detail by rotating the mouse wheel, or by using the zoom-control
buttons (zoom in

, zoom out

, and zoom to fit

). You can also use the following keyboard shortcuts: CTRL+PLUS to zoom in; CTRL+MINUS to zoom out.

To pan the main timeline, move the mouse pointer over the highlighted area in the overview timeline (

), and drag to the left or right.

Troubleshooting the timeline

If you are profiling a Silverlight application, the heap size counters are not displayed in the timeline. This is due to a limitation in Silverlight. Click
the tab to show these values.Session Overview

If you are not profiling a Silverlight application, and you cannot see the performance counters in the timeline, you may need to rebuild your
.performance counters

Counter values may be different from those shown in Performance Monitor or Windows Task Manager, because there are different ways of

counting memory usage. For more details, see .Setting up performance counters

1.

2.
3.

1.
2.

3.

4.
5.

1.

2.

Working with the Summary tab

The Summary page shows a summary of how your application was using memory when you took the current snapshot.

The Summary page is divided into four areas:

Total size of large objects
 Memory fragmentation
.NET and unmanaged memory
Largest classes

Total size of live objects

The following information is shown:

Total size of objects in baseline snapshot (Snapshot Name) - The amount of memory being used by the .NET heaps at the time of
the baseline snapshot.
Total size of objects in (Snapshot Name) - The amount of memory being used by the .NET heaps in the current snapshot.
Difference between (Current Snapshot name) and (Baseline snapshot name) - Difference between the two.

If you have not selected a baseline snapshot, or if you have only taken one snapshot, the and Total size of objects in baseline snapshot Differ
 snapshots are unavailable.ence between

Use this information to check how memory usage has changed between the snapshots. To change the snapshots being compared, under the
timeline, use the and dropdown lists. You can name the snapshots; see .Snapshot: Current: Working with the timeline

Memory fragmentation

The following information is shown:

Total number of fragments - The amount of fragmentation.
Number of large fragments - Having many large fragments increases the likelihood of memory problems. ANTS Memory Profiler also
shows the percentage of total free memory accounted for by large fragments. If the number of large fragments is high, and the
percentage of free memory accounted for by those fragments is also high, problems are likely to occur sooner.
Wastage due to small fragments - Small fragments are not bad. They are just an indication that the garbage collection is not
compacting the heaps appropriately. If the percentage of free memory accounted for by small fragments is high, you probably do not
have a problem with large object heap fragmentation.
Largest fragment - The size of the largest block of unused memory that is currently reserved for .NET.
The profiler's interpretation of this data.

If you are not used to memory profiling, we recommend that you start by .checking for large object heap fragmentation

If you are profiling an assembly with more than one process

The .NET heaps and garbage collector exist per process, and so it would be meaningless to analyze fragmentation across multiple processes.
Use the dropdown to choose the process to display fragmentation for. The option is not displayed if your application only hasProcess: Process:
one process.

A process followed by an exclamation mark (!) after its name was not running when the current snapshot was taken (either because it had already
finished, or because it had not yet started).

.NET and unmanaged memory

This pie chart shows the memory used by your program when the current snapshot was taken. If you do not have large object heap
fragmentation, use this pie chart to identify whether your problem is caused by .an unmanaged or a managed memory problem

Generation 1 - The size of objects stored on the generation 1 heap (objects that have survived at least one garbage collection). Click the
pie chart segment, or the Generation 1 label, to show the classes on the generation 1 heap in the Class List.

'Fragment' here means 'block of unused memory'.

2.

3.

4.
5.

Generation 2 - The size of objects stored on the generation 2 heap (long-lived objects that have been promoted from the generation 1
heap). Click the pie chart segment, or the Generation 2 label, to show the classes on the generation 2 heap in the Class List.
Large Object Heap - The size of objects stored on the large object heap (mainly arrays larger than 85kB). Click the pie chart segment, or
the Large Object Heap label, to show the classes on the large object heap in the Class List.
Unused memory allocated to .NET - The amount of memory which is currently available for .NET.
Unmanaged - The amount of unmanaged memory used by your program.

Largest classes

After you have determined that you have a problem in the managed memory, and if you are not sure which class is causing the problem, we
recommend that you investigate the largest classes. For more information, see .Finding out what is using most memory

The generation 0 heap is not shown because taking a snapshot forces a garbage collection.

Working with the Class List

Use the Class List to identify classes which you do not expect to be in memory, or classes with unexpectedly high memory usage. Use tofilters
restrict your investigation to objects with specific characteristics or specific parts of the application.

The class list shows detail of memory usage per class. On the summary or class list, look for classes with unexpectedly high memory usage, or a
large increase in size between snapshots.

When you enable filters or use the find

 box, the values in the list only include objects that match the selected criteria.

If you are is used, it can be useful to start by looking at or . Click on the column headingchecking where most memory Live Size Live Instances
to sort the column, and look for classes with an unexpectedly large size or number of instances.

Right-click on a class and select

 to see where instances of the class are being referenced.Show Instance Categorizer

If you are , it can be useful to begin by looking for unexpected differences between two snapshots in the or looking for a memory leak Size Diff Ins
 columns. Click on the column heading to sort the column, and then look for classes where the memory usage or instance count hastance Diff

increased significantly.

Use the to focus your analysis, depending on the snapshots you are comparing: Comparing snapshots filters

If you are looking for objects which exist in both the baseline and the current snapshot, select ;Only surviving objects
If you are looking for objects which were created between the two snapshots, select .Only new objects

After selecting an appropriate filter:

If the class that looks interesting is one you recognize, right-click and select

 to look for instances of the class.Show Instance List
If the class that looks interesting is not one you recognize, right-click and select

 to find out where instances of the class are being referenced.Show Instance Categorizer

If your application has more than one process, select the process from which you want to view the classes by using the dropdown box.Process:
The option is not displayed if your application only has one process.Process:

A process followed by an exclamation mark (!) after its name was not running when the current snapshot was taken (either because it had already
finished, or because it had not yet started).

Finding a specific namespace and class name

To find a specific namespace or class, type part of the name in the find box. This can be useful, for example, if you are checking back on a
memory leak you have fixed. In many cases, we do not recommend starting your investigation by looking for specific classes; instead, start by
looking at the size or instances columns.

We recommend this approach because a lot of the code being executed by your application is likely to be part of the .NET framework libraries or
other third-party libraries, so you are likely to see leaks in classes which are not your own, even where your code is the cause of the leak.

Live Size and Live Instances

The column shows the total size of instances of the class in the current snapshot.Live Size

The column shows the total number of instances of the selected class in the current snapshot.Live Instances

The values do not include instances of classes referenced by the selected class.

These values can be good starting points for finding out where most memory is being used by your application.

To investigate why a class has a large size or high number of instances, do one of the following:

look at instances of the class on the instance list
use the instance categorizer to investigate whether another class is keeping instances of your class in memory unexpectedly.

Size Diff and Instance Diff

When you compare two snapshots, the and column show the differences between the baseline snapshot and the currentSize Diff Instance Diff
snapshot.

An unexpected increase in the size of a class or number of instances may indicate a memory leak. For example, if you perform an action where
you expect new objects to be cleaned up between the snapshots (such as opening and closing a dialog box), you would not expect the class to
increase in size or the number of instances to increase.

In some cases, an increase in size or number of instances may not indicate a leak:

For an application that includes a text editor, the size of the text buffer would be expected to increase as the user adds more text to a
document. In this case, the column for the text buffer class shows an increase in size, but this is not an indication of a memorySize Diff
leak.
For an application with a text editor backed by a DOM, the number of nodes of a DOM would be expected to increase. In this case, the In

column for the DOM classes shows an increase, but this is not an indication of a memory leak.stance Diff

The column has a specific purpose when either of the following filters is enabled:Instance Diff

From the current snapshot, show only survivors in growing classes.
From the current snapshot, show only zombie objects.

See for more details.Basic filters

Working with the Instance Categorizer

Use the Instance Categorizer to investigate the paths that are holding classes in memory.

The instance categorizer shows reference relationships between classes, which can help identify instances that are unexpectedly kept in memory.
This can be particularly useful if your snapshot analysis identifies a class you do not recognize: Use the explorer to follow chains of references to
the class, until you reach a class you recognize which may be responsible for the memory usage.

When you apply filters, the instance categorizer only includes the filtered objects.

The instance categorizer has two different views:

Categorized references view
All references view

Categorized references view

This is the default view. In this view, instances of the selected object are categorized by the shortest path to a GC Root. The path responsible for
holding most instances of the selected class is shown at the top.

To see the instances that each category contains, click your selected class (in black, on the right), and then click .Show instance list

All references view

In the all references view, your selected class is shown at the center of the graph (in black). Classes to the left have instances that reference any
instance of the selected class; classes to the right have instances which are referenced by at least one instance of the selected class.

Tips

The percentage shown on a class indicates the proportion of instances of the selected class (in the center) that are connected to it by
references along that path. Look at the percentages on classes to the left of the selected class to assess which classes are responsible
for instances of the selected class being in memory.
To find out why your selected class is unexpectedly large, look at the class that is responsible for most references to the selected class.

In the categorized references view, this is on the top row, to the left of the selected class. Click the class to expand the graph,
showing classes that reference this class.
In all references view, this is the class at the top-left of the graph. Follow the path to the left to see classes that reference this
class.

The graph shows all references between classes, so you may find that as you expand classes and follow references along a particular
path you start to see the same classes repeatedly in the path. This is a circular reference chain, and you are unlikely to find useful
information by continuing to follow it. Instead, click

 to display the instance list for one of the classes on this path, and then display the instanceShow instances of this class on this path
retention graph for an instance, to investigate why the instance is in memory.
If you are looking for the Class Reference Explorer from ANTS Memory Profiler 6 and earlier, select All references view.

Working with the Instance List

The shows information about all instances of a class. This can help to identify instances that may be the cause of a memoryinstance list
problem.

When you apply filters, the instance list only includes the filtered objects.

The instance list is useful for understanding what instances of a class are in memory, and for identifying objects which are likely to be involved in
a memory leak.

Select an instance and then click

in the column to find out more about the properties of the specific instance.Value

New Object

The column indicates whether the object was created between two snapshots you are comparing, or whether it existed already in theNew Object
earlier snapshot. (This column is only populated when you are comparing two snapshots.)

When you are comparing two snapshots, either or in the column may be an indication of leaked objects, depending on whenYes No New Object
you took your snapshots.

Yesmay indicate a memory leak when you are comparing snapshots and you expect instances of the selected class to be cleaned up by
the garbage collector between snapshots. For example, you take a snapshot before and after opening and closing a dialog box. Objects
created by the action should be cleaned up before you take the second snapshot, so new objects in the second snapshot are likely to
indicate a memory leak.

When you investigate these new objects further, apply the filter; this ensures you are only looking at objects which are newNew objects
in the second snapshot.
No may indicate a memory leak when you are comparing snapshots and you expect instances that exist before the first snapshot to be
cleaned up by an action you take between snapshots. For example, you populate a list with data, and then take a snapshot before and
after clearing the list. Objects created before the first snapshot should be cleaned up before you take the second snapshot, so old objects
in the second snapshot are likely to indicate a memory leak.

When you investigate these objects further, apply the filter; this ensures you are only looking at objects which exist inSurviving objects
both snapshots.

GC Root Object

The column indicates whether the object is a GC root object. A GC root can be any storage slot to which the running programGC Root Object
has access, such as a local variable, static variables, or a CPU register. (Note that the object itself is not the GC root; the storage slot that holds
the reference to the object is the GC root.)

When the garbage collector runs, it determines which objects are not garbage by 'walking the heap', starting at the GC roots. Objects which can
be reached by following a chain of references from a GC root are designated as not garbage, and are not collected.

To find out why an object in the instance list is a GC root, select it and then click

. Information on the graph shows why the object is a GC root.

GC root objects are not usually the source of memory leaks. However, they can be useful in memory leaks because there is always afinding
chain of references between the leaked object and one or more GC roots. To enable the garbage collector to clean up the object, you need to
break this chain of references by changing your code to remove one of the "links" in the chain.

The GC Root Object column shows 'Yes - Weakly Referenced' if the object is weakly referenced. Objects with weak references are often used for
cacheing because these objects can be destroyed by the garbage collector if memory becomes low. For this reason, weakly referenced objects
are not usually the source of memory leaks.

Distance from GC Root

The column shows the number of references in the chain between the object and its nearest GC root. Distance from GC Root

It is likely that shorter, more obvious chains of references between objects and their GC roots have been broken already. Often objects which are
at a greater distance from a GC root may be involved in a memory leak, because the chain of references from the GC root to the object is more
complex.

Size with children

The column shows the size of the object and any object that it references that is further away from a GC root. This means thatSize with children
the value is a realistic estimate of the amount of memory that would be saved by removing a particular object from memory.

Working with the Instance Retention Graph

The shows chains of references between GC roots and your selected object. Start at your selected object and followinstance retention graph
the chains of references up towards the GC roots, to identify references that are preventing the garbage collector from collecting your object.
When you find an unexpected reference, modify your code to break the reference, and then profile the application again to check the problem is
fixed.

Key

The instance you selected.

GC root object.

The object under this one in the graph is a GC root because it is
a GC Handle.

The object under this one in the graph is a GC root because it is
on the stack, having been put on the stack by .bz.d()

The object under this one in the graph is a GC root because it is
a member of the static variable .Connection.s_NullBuffer

Group of strongly-connected objects
(see tips below).

Non-disposable instance for which you have source code.

Non-disposable instance for which you do not have source code.

Disposable instance for which you have source code.

Disposable instance for which you do not have source code.

Disposed instance.

The simplest path between these two instances.
(Note that if you break this link, the objects may still be
connected by a more complex link.)

Move your mouse pointer over an object to view more information in a tooltip.

Click

on a node in the graph to see the properties of a specific instance.

Tips

The instance retention graph only shows the shortest chain of references from each GC root to your selected object. When you break this
chain of references, the object may still be kept in memory by a longer chain of references.
After you have modified your code to break the first chain of references, profile your application again; the instance retention graph
updates to show the chain of references which is now the shortest chain. You will need to modify your code again, to break this chain of
references, and repeat until all the chains of references are broken and the object is no longer in memory.
Objects grouped in a box are strongly connected; every object references every other object in the group (the reference may be direct or
indirect). To remove an object from memory, you do not normally need to break all the references between a GC root and your object:
only of the references needs to be removed to prevent your object from being kept in memory.one

However, the relationship between strongly connected objects is complex, so in this case you may need to break more than one
reference to prevent your object from being held in memory. Break the references one at a time, and take new snapshots each time to
check whether your object is still in memory.
If there is an event handler in the chain of references from a GC root to your object, look at the objects that directly reference the event
handler; these references are often a good point to break the chain of references to your object.
If your graph shows an object which does not appear to be referenced by anything, it may be because this object is on the finalizer
queue. The graph hides finalizer queue GC roots by default, because they do not normally indicate a memory problem. To show these
objects on the graph, clear the option (in the bar above the graph).Hide finalizer queue GC roots
If the graph shows your object is being kept in memory by an object on the finalizer queue, take another memory snapshot. Taking a
snapshot forces the garbage collector to run, so your object should now be removed from memory.

Working with object filters

Use the filters panel to focus your memory usage investigation on objects that are more likely to be of interest.

Select one or more of the filters to show only objects that match all of the selected conditions. Other objects are hidden.

The bar above the results area indicates the number of objects affected by the current filters:

When using filters, you may see some objects that do not match the filter criteria. If this happens, take another snapshot. This forces a garbage
collection so that any objects on the finalizer queue are removed.

For more information about the different types of filters, see:

Basic filters
Filter by object type
Filter by reference

Filters cannot identify memory problems themselves, but they can help by focusing your investigation. For notes about filters that can be useful in
some conditions, see .Suggestions for using filters

When you apply multiple filters, only objects that match the filters are shown (i.e. there is an AND relationship between filters).all

For example, select both the following filters:

Disposed objects which are still in memory
Objects on Gen 1 heap

Objects are shown only if Dispose() has been called on them they are on the Gen 1 heap.and

Working with basic filters

This page contains a description of the basic filters in ANTS Memory Profiler.

For a summary of how to use them, see . For a description of which filters are most useful, see Using filters to find objects Suggestions for using
.filters

Comparing snapshots

Show objects in your current snapshot, based on the comparison with your baseline snapshot.

From the current snapshot show only new objects

Show only objects created between the baseline snapshot and the current snapshot.

Use this filter to find objects that did not exist in the baseline snapshot. This is useful if you want to understand why memory usage has increased
between the snapshots.

From the current snapshot show only surviving objects

Show only objects that remain in memory in both the baseline snapshot and the current snapshot.

Use this filter to find objects that exist in both snapshots. This is useful if you want to look for objects which might be leaking in the current
snapshot, because they should have been disposed between the two snapshots.

From the current snapshot show only survivors in growing classes

Show only objects that match all of the following conditions:

were present in the baseline snapshot
are present in the current snapshot
are instances of a class which has more instances in the current snapshot than in the baseline snapshot.

When this filter is applied, in the , the Instance Diff column assumes that all instances in the baseline snapshot are potential survivors,Class List
and then calculates the difference between the number of survivors in the current snapshot and the number of potential survivors from the
baseline snapshot. An instance diff of 0 means that all objects survived; an instance diff of -10 means that 10 objects that were in the baseline
snapshot are not in the current snapshot.

Because only growing classes are included in this filter, the instance diff will never be a positive number.

This filter is particularly useful, because classes with an instance diff of 0 are good candidates for finding memory leaks (no instances of the class
were disposed between the two snapshots).

From the current snapshot show only zombie objects

Show only objects that are still in memory in the current snapshot, even though there were indications in the baseline snapshot that they would
not survive.

This includes objects with the following characteristics:

Objects on which has been called in the baseline snapshot, but which are still in memory in the current snapshot becauseDispose()
garbage collection was prevented for some reason
Objects on the finalizer queue in the baseline snapshot (this includes objects still on the finalizer queue in the current snapshot and
objects which are no longer on the finalizer queue in the current snapshot)

When this filter is applied, in the , the Instance Diff column compares the number of objects on the finalizer queue in the baselineClass List
snapshot to the number of objects on the finalizer queue in the current snapshot. An instance diff of -1 means that one object that was on the
finalizer queue in the baseline snapshot is no longer on the finalizer queue.

This filter is useful because these objects should not normally still be in memory in the current snapshot.

Show Only...

Classes with source

Show only objects with source code.

Note that you should not normally use this filter when you start looking for the cause of a memory problem (see Understanding ANTS Memory
).Profiler

Objects on the large object / Gen 0 / Gen 1 / Gen 2 heap

Show only objects in the selected area of memory.

Use this filter to understand how objects are allocated in memory. Looking at objects on the Gen 2 heap may be especially helpful, because these
are the longest-surviving small objects.

You can also use this filter to investigate objects on the large object heap, which is useful if you have large object heap fragmentation.

Note that you will not normally see any objects on the Gen 0 heap during profiling, because taking a snapshot forces a garbage collection. For
more information, see 'Understanding the small object heaps' in the ..NET Memory Primer

This filter is not available when you are profiling a .NET 1.1 application.

Suggestions for using filters

Filters cannot identify memory problems themselves, but they can help by focusing your investigation. The following notes suggest filters that can
be useful in some conditions.

Filters that can help find a memory leak

The following filters can be useful in finding a memory leak:

From the current snapshot, show only survivors in growing classes
This filter is particularly useful, because classes with an instance diff of 0 on the Class List are good candidates for finding memory leaks
(no instances of the class were disposed between the two snapshots).
Disposed objects which are still in memory
This filter is useful because disposed objects should not normally be kept in memory.
Kept in memory exclusively by event handlers
Event handlers should not normally be the only reason an object is kept in memory, so this filter can help identify a memory leak.
Kept in memory exclusively by disposed objects
Disposed objects should not normally be kept in memory, so this filter can help identify a memory leak.
From the current snapshot, show only zombie objects
This filter is useful because these objects should not normally still be in memory in the current snapshot.

Filters that can help focus on a specific part of your application

The following filters can be particularly useful when you want to focus on a specific part of an application, or exclude a specific part of an
application:

Objects on large object / Gen 0 / Gen 1 / Gen 2 heap
Use this filter to understand how objects are allocated in memory. Looking at objects on the Gen 2 heap may be especially helpful,
because these are the longest-surviving small objects.
You can also use this filter to investigate objects on the large object heap, which is useful if you have large object heap fragmentation.
Kept in memory exclusively by objects from namespace
Use this filter to look for your classes, excluding third-party and framework code. You should not normally do this when first looking for
the source of a memory leak, because this filter may hide the symptoms of a leak originating in your code.
Never referenced by an instance of class/interface
Use this filter if you think that all classes should be referenced by a particular class or interface. If a class is still shown, it is being kept in
memory for a different reason.

See , which demonstrates using filters in your memory profiling workflow.the worked example

The 'Disposed objects which are still in memory' and 'Kept in memory only by event handlers' filters are not available when profiling a
.NET 1.1 application.

The 'Objects on large object / Gen 0 / Gen 1 / Gen 2 heap' filters are not available when profiling a .NET 1.1 application.

https://documentation.red-gate.com/display/AMP7/Working+with+basic+filters#Workingwithbasicfilters-survivors-growing
https://documentation.red-gate.com/display/AMP7/Filtering+by+object+type#Filteringbyobjecttype-disposed-in-memory
https://documentation.red-gate.com/display/AMP7/Filtering+by+reference#Filteringbyreference-events-exclusively
https://documentation.red-gate.com/display/AMP7/Filtering+by+reference#Filteringbyreference-disposed-exclusively
https://documentation.red-gate.com/display/AMP7/Working+with+basic+filters#Workingwithbasicfilters-zombies
https://documentation.red-gate.com/display/AMP7/Working+with+basic+filters#Workingwithbasicfilters-generations
https://documentation.red-gate.com/display/AMP7/Filtering+by+reference#Filteringbyreference-namespace
https://documentation.red-gate.com/display/AMP7/Filtering+by+reference#Filteringbyreference-not-class-interface

Filtering by object type

This page describes the filters that allow you to filter by the object type.

For a summary of how to use them, see . For a description of which filters are most useful, see Using filters to find objects Suggestions for using
.filters

Objects that are disposable

Show objects that implement the IDisposable interface. This filter is identical to the filter.Referenced by: System.IDisposable

Use this filter to check whether objects which should be disposable (whether or not they have actually been disposed) are still in memory.

Objects that disposedare / are not

When set to show only objects on which Dispose() has been called, but which cannot be garbage-collected because a reference to the objectare,
still exists in memory.

This filter is useful because disposed objects should not normally be kept in memory. When you have identified a disposed object with this filter,
display it on the object retention graph, then follow the chains of references to identify the objects keeping the disposed object in memory.

Objects that GC rootsare / are not

Show only GC root objects, or hide GC root objects

If you are investigating a memory leak, it may be useful to hide GC root objects, because they are not generally the source of leaks.

If you are performing a general check on memory usage, it may be useful to show only GC root objects. Show the class list to see details of
classes with instances which are GC roots, and then use the class reference explorer to investigate the relationships between these classes and
other classes with instances in memory.

Objects that implement class/interface

Show objects that:

inherit from the selected class
implement the selected interface
are objects of the selected class/interface.

If more than one class/interface is selected, objects are shown only if they implement all of the selected classes/interfaces.

This filter is useful if you believe that the selected class/interface may be being kept in memory by other type which implements it.

This filter is not available when you are profiling a .NET 1.1 application.

To look for specific types of GC roots, combine this filter with the filters on the Kept in memory exclusively by GC roots of type Filter
 tab.by Reference

Filtering by reference

This page describes the filters that allow you to filter by the references to objects.

For a summary of how to use them, see . For a description of which filters are most useful, see Using filters to find objects Suggestions for using
.filters

Kept in memory exclusively by

Disposed objects

This filter shows disposed objects and objects where all chains of references between the object and a GC root go through a disposed object.

To enable this filter, select , then click , then select .Kept in memory exclusively by Add new item Disposed objects

Example: The yellow objects are the objects shown by this filter.

Disposed objects should not normally be kept in memory, so this filter can help identify a memory leak.

When you have identified an object that is kept in memory only by a disposed object, display it on the object retention graph, and follow the chains
of references to identify the objects keeping the selected object in memory.

Event handlers

Show only objects where all chains of references between the object and a GC root go through an event handler.

To enable this filter, select , then click , then select .Kept in memory exclusively by Add new item Event handlers

Example: The yellow objects are the objects shown by this filter.

Event handlers should not normally be the only reason an object is kept in memory, so this filter can help identify a memory leak.

When you have identified an object that is kept in memory only by an event handler, display it on the object retention graph, and follow the chain
of references from the object to the event handler; it is likely that the cause of the problem is an object close to the event handler.

GC root of type GC root type

The disposed object itself is included in the objects shown. Objects which are disposed but are on the finalizer queue are not shown.

This filter is not available when you are profiling a .NET 1.1 application.

The event handler is included in the objects shown. Objects which are held in memory only by event handlers but are on the finalizer
queue are not shown.

Show objects with GC roots of the specified types.

To enable this filter, select , then click , then select .Kept in memory exclusively by Add new item GC root of type...

When you select more than one type of GC root, objects are shown if they have a GC root which is any of the selected types.

This filter is especially useful because, if you filter objects that are kept in memory exclusively by a GC root of type finalizer queue, this will show
objects on which Dispose() should be called.

To look for specific types of GC roots, combine this filter with the filter.Objects which are GC roots

Undisposed objects

Show undisposed objects where no chain of references between the object and its GC roots go through a disposed object.

Use this if you want an estimate of how much memory could be freed by disposing the objects.

To enable this filter, select , then click , then select .Kept in memory exclusively by Add new item Undisposed objects

Add class / interface...

Show instances of the specified class or interface (including derived types) and objects where instances of the specified class or interface exist in
all chains of references between the object and a GC root.

To enable this filter, select , then click , then select the required class or interface.Kept in memory exclusively by Add class / interface

Example: The yellow objects are the objects shown by the filter (where is the only object that is an instance of the selected class or thatObject 4
implements the selected interface).

This filter shows objects where instances of the specified class or interface (including derived types) exist in chains of references between theall
object and a GC root. To show objects where instances of the specified class exist in chain of references (but not necessarily in chat least one all
ains of references) between the object and a GC root, use the filter. Objects which match yourReferenced by instances of class/interface
criteria but are on the finalizer queue are shown.not

If you select more than one class / interface, objects which are kept in memory by all of the listed classes / interfaces are shown.

Add namespace...

Show objects from the specified namespace and objects where instances of classes from the specified namespace exist in all chains of
references between the object and a GC root.

To enable this filter, select , then click , then select the required namespace.Kept in memory exclusively by Add namespace

Example: objects kept in memory exclusively by a class from the namespace that is an instance of:Object 4

(Note that - which is an instance of the a class in the specified namespace - is included in the objects shown)Object 4

The GC root object is included in the objects shown.

Instances of the specified class are included in the objects shown.

If you select more than one namespace, objects which are kept in memory by all of the listed namespaces are shown.

When you select multiple criteria for this filter, objects are only shown if they are satisfy all of the selected criteria.

Referenced by

The filters behave identically to the filters, except that objects are shown if at least one of theReferenced by Kept in memory exclusively by
paths of reference to the GC route goes through the specified type or GC Root. The reference may be direct or indirect.

(With the Kept in memory exclusively by filters, objects are shown if all of the paths of reference to the GC route go through the specified type or
GC Root.)

When you select multiple criteria for this filter, objects are only shown if they are satisfy all of the selected criteria.

Never referenced by

The Never referenced by filters have the opposite behavior to the Objects referenced by filters. Objects are shown if none of the paths of
reference (including indirect references) to the GC root goes through the specified type of GC Root.

The filter can be especially useful. Some examples of when you might want to use this filter:Add class/interface

You know that all the data in your application should be referenced by a single main class. Apply the Never referenced by an instance
 filter to remove objects referenced by the main class from the results.of class/interface

Your application performs caching (for example, web applications that cache the query results). Cached objects are deliberately kept in
memory for a period of time. Apply the filter to exclude objects referenced by aNever referenced by an instance of class/interface
cache class (for example, , for ASP.NET applications).System.Web.Caching.Cache

Relationships between objects

Filters on the tab enable you to narrow down your search for memory problems by concentrating on certain types ofFilter by Reference
relationships between objects.

Referenced by

Objects may be in memory because another object references them; the object is on at least one of the chains of references between the
selected object and a GC root.

Example: objects referenced by Object 1

Objects which match your criteria but are on the finalizer queue are shown.not

When viewing the Class List, the number of classes shown when the Never referenced by filter is enabled, plus the number of classes
shown when the Referenced by filter is enabled, might add up to more than the total number of classes in the application. This is
because some classes might have instances that are referenced by the selected type, while other instances of the same class are
never referenced by the selected type.

In this example all objects except are referenced by , either directly or indirectly. Note that the filter selection includes theObject 2 Object 1
specified object, .Object 1

Kept in memory exclusively by

Some filters show objects where the selected object is in all chains of references between the objects and a GC root - that is, objects are kept in
memory by the selected object.only

Example: objects kept in memory by (note that the filter includes the selected object, 1)Object 1 Object

In this example, only four objects are kept in memory only by . is not in all the chains of references between the remainingObject 1 Object 1
objects and their GC roots; for example, has another GC root which references it via . Note that the filter selection includes theObject 4 Object 2
specified object, .Object 1

1.

2.

1.
2.
3.

4.

5.

Using the snapshot API

You can use the API exposed by ANTS Memory Profiler to take snapshots from within your code. First, you need to edit your application's code to
trigger the snapshot, then run the built application alongside ANTS Memory Profiler.

Take snapshots from your code to ensure that snapshots are taken precisely when you believe that a leak occurs, or if your application does not
have an interface through which you can control it. The snapshot API lets you essentially automate the process of taking a snapshot.

Editing your code to invoke the snapshot:

Create a reference to (You can find a copy in RedGate.MemoryProfiler.Snapshot.dll %ProgramFiles%\Red Gate\ANTS Memory Profiler
)7\

Call whenever you want to take a snapshot. This method returns onRedGate.MemoryProfiler.Snapshot.TakeSnapshot() true
success and on failure. To take a snapshot and give it a memorable name at the same time, provide a string argument to the false Tak

 method, for example: .eSnapshot RedGate.MemoryProfiler.Snapshot.TakeSnapshot("Clicked button")

Running your application

Start ANTS Memory Profiler.
Set up ANTS Memory Profiler to profile your application in the normal way.
When you click

, your application starts.
Snapshots are taken automatically at the trigger points you defined in your code. If required, you can still use the

button to take snapshots manually as well.
Profiling results are shown in ANTS Memory Profiler.

If your application is a Silverlight browser application, you cannot use the snapshot API. (This is due to security restrictions in
Silverlight.)

We recommend that you contain the method within a statement. This is because caTakeSnapshot() try-catch TakeSnapshot()
n raise exceptions, for example if it is called more than 5 times in 30 seconds.

1.

2.
3.

4.

Worked example

In this worked example, ANTS Memory Profiler is used to find out what uses most memory in Red Gate's Exception Hunter:

The class is the largest class, accounting for 73.74MB of managed memory used by the application. Byte[]

Click .Byte[]
The Instance Categorizer shows that most instances of Byte[] (totaling 23.9MB) are held on a path where the shortest route to a GC root
object leads to an object called . On the node on this path, click .cB Byte[] Show instances on this path

The Instance List lists the 46 objects on this path. For instances of it might be interesting to use the Instance List toSystem.String
look at the values of the strings, but this is unlikely to be the case for Byte[] instances, so choose any one and click

.
(All of the instances in the Instance List are all on the same shortest path, so it should make little difference which one you choose.
Selecting the instance with the greatest size with children is often a sensible start, however.)

4.

5.

1.
2.

3.
4.

The Instance Retention Graph shows which other types keep this instance in memory.

Conclusions:

The class accounts for most memory used by this program (73.74MB).Byte[]
The largest number of objects from the class (46 instances, totaling 23.9MB) are held on a path leading back to a GC root objectByte[]
from the class .cB
The selected instance is being kept in memory by , which in turn is being kept in memory by both and .cv cB cB+e
You now need to decide whether this should be the case, or whether there is a problem.

Video tutorials

Watch the to see examples of ANTS Memory Profiler in action, and learn more about some areas of functionality:video tutorials

Overview of ANTS Memory Profiler
Understanding the summary screen
How to use the filters
Using the instance categorizer

http://www.red-gate.com/products/dotnet-development/ants-memory-profiler/video

Troubleshooting

Common issues

Attach to process unavailable with some anti-virus software
Memory leaks observed when profiling WPF applications
Silverlight in-browser profiling stops with no results
Silverlight out-of-browser profiling stops with no results
Troubleshooting SharePoint profiling
Troubleshooting the Visual Studio add-in

Error messages

Couldn't open metabase
Error stopping IISAdmin profiling IIS web application on Windows XP
Failed to CoCreate Profiler
No Disk
Operation could destabilize the runtime
The COMplus application has not loaded the .NET Framework
The snapshot failed because .NET did not report every referenced object
The system cannot find the file specified
The type initializer for 'y.layout.hierarchic.ClassicLayerSequencer' threw an exception
Unable to connect to server

Unexpected behavior and technical questions

Profiler prompts for location of source code which is not your own source code
Profiling a Windows service fails if the service uses a system account
Profiling Microsoft Office managed-code add-ins
Rebuilding performance counters
Total size of all objects does not match the memory footprint of an application

Common issues

Attach to process unavailable with some anti-virus software
Memory leaks observed when profiling WPF applications
Silverlight in-browser profiling stops with no results
Silverlight out-of-browser profiling stops with no results
Troubleshooting SharePoint profiling
Troubleshooting the Visual Studio add-in

Attach to process unavailable with some anti-virus software

When using ANTS Memory Profiler or ANTS Performance Profiler, you may find that you cannot .attach to any .NET 4 process

Cause / Possible causes

This can be caused by anti-virus software.

To create the list of .NET 4 processes you can attach to, the profiler checks all running processes to check whether they are managed processes.
For managed processes, the profiler obtains the CLR version number.

Processes that are part of some anti-virus programs protect themselves by changing their entries in the Access Control List. If a running process
is protected in this way, the profiler cannot check the CLR version of that process, or of any other running processes.

How to fix

To work around this problem, uninstall your anti-virus software while profiling.

If you continue to experience problems, please contact .Redgate support

http://redgatesupport.red-gate.com/home

Memory leaks observed when profiling WPF applications

When profiling some applications based on the Windows Presentation Framework (involving controls with collapsed visibility), the private bytes
count may increase continually and never decrease.

This is caused a known bug in WPF for which Microsoft has released a hotfix. For more information, see Microsoft Knowledge Base article
. You can find a full description of the issue on .967328 Ramon de Klein's blog

http://support.microsoft.com/kb/967328
http://support.microsoft.com/kb/967328
http://blog.ramondeklein.nl/index.php/2009/02/20/memory-leak-with-wpf-animations/

Silverlight in-browser profiling stops with no results

When running in Internet Explorer, ANTS Memory Profiler may disconnect from the session and startprofiling a Silverlight application
summarizing results.

How to fix

This can be caused by a number of different issues:

Cause Resolution

An instance of is already running in the background, and the Profileriexplore.exe
attaches to that instance.

Use Task Manager to check that no instances of iexplore.
are running.exe

Internet Explorer restarts in 'protected mode'. Ensure your Internet Explorer settings allow it to run as
administrator.

Javascript in the application closes the web browser window. Disable the Javascript during profiling.

In other cases, if the Silverlight application is configured to run out-of-browser, .profile the application in out-of-browser mode

If you continue to experience problems, please contact .Redgate Support

1.
2.
3.
4.

Silverlight out-of-browser profiling stops with no results

When profiling an out-of-browser Silverlight application, the profiling session may stop soon after it starts, leaving the application still running. The
following message or similar will appear in the ANTS Memory Profiler log file:

[Profiler pipe monitor] WARN RedGate.Profiler.Engine.Startup.Basic.PipeConnection - Rejected a connection
attempt from process ID 0x978 'C:\Program Files (x86)\Microsoft Silverlight\sllauncher.exe'

Microsoft had released a security patch to Silverlight in October 2011 that changed the way the out-of-browser Silverlight launcher starts and
connects to the profiling API. The sllauncher.exe process seems to Profiler as if it starts and exits immediately, and a new process appears that
Profiler will not allow to connect.

Until this problem can be addressed there is a workaround available, which is to profile cmd.exe and launch the Silverlight application in a console
session.

Instead of selecting the option to profile a Silverlight application, use the option to profile a .NET executable.
Ensure the option is enabledprofile child processes
Set the executable as c:\windows\system32\cmd.exe
Set the arguments to be /K ""c:\program files (x86)\microsoft
silverlight\sllauncher.exe"/emulate:"c:\YourOOBAppFolder\YourOOBApp.xap" /origin:"c:\YourOOBAppFolder" /overwrite"
Where "YourOOBApp" is the folder the XAP resides in and "YourOOBApp.xap" is the out-of-browser Silverlight application

The /K option to cmd will keep the console session and allow ANTS Memory Profiler to attach to any process started in the console session.

1.
2.

3.

1.
2.
3.
4.
5.

1.
2.
3.

Troubleshooting SharePoint profiling

If you encounter difficulties, the most likely cause is that ANTS Memory Profiler cannot read from the directory to which SharePoint is writing data.
To fix this:

Create a temporary directory
If you are not on a sensitive system, allow full read/write access to this temporary directory to all users. If you are on a sensitive system,
ensuring that the local system account has read/write access should suffice.
Use to add a new environment variable. The variable must be called and the value is the path to theControl Panel RGIISTEMP
temporary directory you just created.

For more information, see . (The information in this post also applies to ANTS MemoryProfiling SharePoint with ANTS Performance Profiler 5.2
Profiler.)

Troubleshooting problems caused by SharePoint security settings

Security features in ASP.NET may cause problems on some systems. In that case, follow the instructions below:

Information you will need

Before profiling a SharePoint 2007 site, you will need to know the following information for the site collection you want to profile:

the URL for the site collection
the TCP port it runs on
the name of the primary site collection administrator
the primary site collection administrator's password

To find the name of the primary site collection administrator:

Open the SharePoint Central Administration website using the Start menu item.
Click the tab.Application Management
Under , click .SharePoint Site Management Site Collection Administrators
From the dropdown list, select the name of the site collection hosting your web part.
Note the account set in the box.Primary Site Collection Administrator

Grant permissions

The primary site collection administrator must have permission to launch an IIS 6 worker process. To grant this permission:

Open then open Administrative Tools Local Security Policy.
Under , click Local Policies User Rights Assignment.
Double-click and add the primary site collection administrator's account.Act as part of the operating system

http://www.simple-talk.com/dotnet/.net-tools/profiling-sharepoint-with-ants-performance-profiler-5.2/

3.

4.
5.

6.
7.
8.
9.

Double-click and add the primary site collection administrator's account.Impersonate a client after authentication
Open a command prompt and run:

gpupdate /force

to enforce the new settings.
Open and go to .Administrative Tools Computer Management
Under , open .Local Users and Groups Users
Double-click the primary site collection administrator's account and open the tab.Member Of
Add the group.Administrators

9.

1.
2.
3.
4.
5.
6.

The must use the primary site collection administrator's account when it starts. To configure this:ANTS Memory Profiler 7.4 Service

Open then open .Administrative Tools Services
Double-click the .ANTS Memory Profiler 7.4 Service
Click the tab.Log On
Select and enter the primary site collection administrator's username and password.This Account
Click .OK
If the status of is , right-click the service and click .ANTS Memory Profiler 7.4 Service Started Restart

6.

1.
2.
3.
4.
5.

Ensure that compilation will be in DEBUG configuration (IIS 6)

(Instructions for IIS 7 are below)

To profile a SharePoint collection, the ASP .NET compilation must be done in DEBUG configuration. This will allow ANTS Memory Profiler to
locate the source code for any web parts or other extensions you have written for the site collection. DEBUG configuration also removes some
unmanaged code restrictions that prevent profiling and stop the site from timing out.

To set DEBUG configuration, you must know the physical path to the root of the site collection website.

To find this path:

Open .Administrative Tools
Open .Internet Information Server (IIS) Manager
Right-click the website containing the site collection then click .Properties
Open the tab.Home Directory
Note the path in the box.Local path

5.

1.
2.
3.
4.

5.

You must now locate and edit the web.config file for the site collection using notepad.exe (or other text-editor).

Use Windows Explorer to navigate to the site collection root's physical path.
Right-click the web.config file.
Open the web.config file using a text editor. Search for the text ' '.Debug
Change
<compilation batch="false" debug="false">
to

.<compilation batch="false" debug="true">
Save the file.

5.

1.
2.
3.
4.

1.
2.
3.
4.

1.

2.
3.
4.
5.

Continue reading at the step 'Copy PDBs and web part DLLs to the app_bin directory' below.

Ensure that compilation will be in DEBUG configuration (IIS 7)

To set the application in DEBUG configuration in IIS 7:

Load . IIS Manager
Click the web application you want to profile.
Click the option..NET Compilation
Under the group, set to .Behavior Debug True

Copy PDBs and web part DLLs to the app_bin directory

To filter out all methods except those run by your code when viewing the profiling results, you must copy the relevant files into the site's app_bin
directory. To do this:

Copy all PDB files and any web part DLLs used by your site to the Clipboard.
Use Windows Explorer to navigate to the site collection root's physical path.
Open the app_bin directory.
Paste all PDB files and any web part DLLs used by your site into this directory.

Start profiling

If the Internet Information Services Manager is not already displayed, open and open Administrative Tools Internet Information Server
.(IIS) Manager

Stop the website.
Start ANTS Memory Profiler.
Under , click .Choose application type to profile ASP .NET Web Application (hosted in IIS)
Enter the path to the ASP .NET web application that hosts your site collection. The path should be in the following format:
http://server:port/

5.

6.

7.

The server is the name of the local server and the port is the TCP port that the web application normally runs on. If the site collection is
on the root virtual directory for the site, you must include the trailing slash.
To profile your application without restarting IIS select and enter a new port number. If your application uses hard-codedUnused port
port numbers, your application will not work and you must chose instead.Original port
Use your SharePoint 2007 Site Collection as normal. Any additions that you have coded, such as web parts and lists, will be reflected in
the ANTS Memory Profiler results if these objects have been accessed.

Troubleshooting the Visual Studio add-in

If you experience problems with the add-in, the following information might help:ANTS Visual Studio

If the path to the source code in the file is invalid, the class is still shown in bold, but the context menu does not display the Visual.pdb
Studio options. Recompile the application on the computer you are using to profile it.
If the solution was opened with elevated privileges (Visual Studio is running as administrator), the option for opening the source code
inside the solution might not be shown. Restart Visual Studio under the same credentials as ANTS Memory Profiler.
The Visual Studio add-in is a separate program from ANTS Memory Profiler, and is installed by default as part of Red Gate's .NET
bundles. If you purchased ANTS Memory Profiler as a standalone product, you might not have the add-in. In that case, download one of
the free trials from the Redgate website and install . You do not need a new.NET bundle ANTS Profiler Visual Studio Add-in 1.0
license for the add-in, and the add-in is not limited to the trial period.

http://www.red-gate.com/products/dotnet-development/dotnet-tool-collections/

Error messages

Couldn't open metabase
Error stopping IISAdmin profiling IIS web application on Windows XP
Failed to CoCreate Profiler
No Disk
Operation could destabilize the runtime
The COMplus application has not loaded the .NET Framework
The snapshot failed because .NET did not report every referenced object
The system cannot find the file specified
The type initializer for 'y.layout.hierarchic.ClassicLayerSequencer' threw an exception
Unable to connect to server

1.
2.

3.

Couldn't open metabase

When profiling an ASP.NET web application hosted in IIS, an exception may occur at the start of profiling. Clicking reveals theShow Details
following information, as well as some stack traces:

Could not start IIS.
Couldn't open metabase - Please ensure that IIS is installed

This error can happen when you are logged into the computer with an account that has reduced privileges.

To correct this:

Log out of the computer and log back in using an Administrator account, or one that has administrative privileges on the machine.
Open a command prompt, and change the working directory to the installation directory of the version of Microsoft .NET Framework that
the ASP.NET application uses as its runtime.
For instance, if the web application that you want to profile uses ASP .NET 2.0:

cd \
cd %systemroot%\microsoft.net\framework\v2.0.50727

Run the ASPNET_REGIIS utility, which will grant permissions to the IIS metabase and ASP .NET temporary files locations. To allow a
domain user called MyDomain\MyUser, this would be the correct command:
aspnet_regiis -ga MyDomain\MyUser

After logging the administrator account off and logging your low-privilege user back on, the account should now have access to IIS and ASP .NET
appropriate for profiling the web application hosted in IIS.

This article relates to both ANTS Performance Profiler and ANTS Memory Profiler.

Error stopping IISAdmin profiling IIS web application on Windows XP

When profiling a web application hosted in IIS 5.x (Windows XP), the following error may occur before code profiling actually takes place:
Error stopping IISAdmin

Because the error occurs while stopping and starting IIS, the error message also covers a failure to START IISAdmin as well, so it is a good idea
to check your application event log at this point. ANTS Performance/Memory Profiler will log the error actually returned by Windows at that
location.

If the event log contains this entry:
System.Exception: Timed out starting 'IISADMIN'
the problem is actually a failure to start the service due to a timeout. In some cases, the default service timeout setting for Windows does not
allow enough time for the service to start.

To increase the timeout, edit the following registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout

The value of this registry key contains the number of milliseconds that Windows will wait for a service to start, the default being 30000 (30
seconds). Increasing this to 60000 (60 seconds) or slightly higher may allow the IISAdmin service to start successfully.

If you change the registry key, restart the computer so that the changes will take effect.

This article relates to both ANTS Performance Profiler and ANTS Memory Profiler.

Failed to CoCreate Profiler

If ANTS Performance/Memory Profiler is used to profile a Windows Service, it modifies the running environment of the service temporarily, then
undoes the changes when profiling is stopped. If the service crashes with an unhandled exception during profiling, however, the modified
environment may be left behind and the service will be permanently 'hooked' into ANTS Performance/Memory Profiler so the service will attempt
to load the Profiler's "core" component at service startup time. Because ANTS Performance/Memory Profiler is not running, the following error
entry is written to the application event log:

Source: .NET Runtime
Category: None
Event ID: 1022
Description: .NET Runtime version 2.0.50727.832 - Failed to CoCreate profiler.

In order to restore the normal environment of the service, the registry editor must be used. Click the start bar, then 'run', then type regedit and
press enter.

Look for the short name of your service in the key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

Open the key that has the same name as your service, and in the right-hand pane, right-click Environment and select Modify.

Locate the entries and and remove these name/value pairs from the registry value. COR_ENABLE_PROFILING=1 COR_PROFILER={a GUID}
When the service is restarted, the error should no longer occur.

This article applies to both ANTS Performance Profiler and ANTS Memory Profiler.

No Disk

When profiling an application, ANTS Memory Profiler may show an error message similar to:

MyApplication - No Disk
There is no disk in the drive.Please insert a disk into drive
\Device\Harddisk1\DR2

Cause

This can happen when the source code location matches a removable drive that has been disconnected. It does not matter if the software was
built on a completely different computer - if the drive letter is the same as a disconnected removable drive on the computer used for profiling, this
error will occur.

How to fix

There are a few possible ways to fix this:

Reconnect the removable drive
Disconnect the removable device that normally mounts the drive
Change the drive letter using Windows Computer Management Console (Disk Management)
Delete the PDB files applicable to the code you are profiling

If you continue to experience problems, please contact .Redgate Support

http://redgatesupport.red-gate.com/home

Operation could destabilize the runtime

When profiling an ASP .NET web application, the following error may appear in the web browser window:

Operation could destabilize the runtime This error occurs sporadically depending on the nature of the code being run in the website process and
the causes of this message can be varied. This is because the error concerns a failure by the runtime to validate Intermediate Language code at a
very low-level.

One possible fix for this problem is to enable full trust for the web application. To do this, open the web.config file in the web application's root
directory and change the trust level, for instance:

<configuration>
 <system.web>
 <trust level="Full"/>

The COMplus application has not loaded the .NET Framework

In order for ANTS Memory Profiler to profile a COM+ application, the application must be started in the context of the logged-in user. The security
architecture of COM+ does not allow a COM+ application to be started from a Remote Desktop or terminal services session, so the COM+
application will start and then exit almost immediately.

If it is absolutely necessary to use ANTS Memory Profiler against a COM+ application remotely, it is possible to run the remote session in console
mode and allow ANTS Memory Profiler to work effectively. This does have the side-effect of logging off any users who are already logged on
interactively, so be prepared to ensure no other users are logged on to the computer to prevent them from losing their work.

To start a remote desktop session in console mode, select Start, then Run, and type 'mstsc /console'.

1.
2.

3.

4.

The snapshot failed because .NET did not report every referenced object

The full text of this error message is:

'The snapshot failed because .NET did not report every referenced object. If the garbage collector is operating in 'server mode' and the
target application has many large objects, a bug in version 2 of the CLR is likely to be the cause.

To work around this bug, manually switch your application to the workstation garbage collector. Search for 'gcServer configuration option' at
 for information on how to do this.'msdn.microsoft.com

Cause / Possible causes

This message occurs because of a bug in .NET version 2.

How to fix

To work around the problem, you must switch your application to the workstation garbage collector. To do this:

For ASP.NET web applications:

For web applications, you need to make the same change in ASP.NET's configuration file on the server.

On 32-bit systems, the file is usually located at C:\Windows\Microsoft.NET\Framework\v2.0.50727\Aspnet.config
On 64-bit systems, the file is usually located at C:\Windows\Microsoft.NET\Framework64\v2.0.50727\Aspnet.config

Edit this file with an XML editor, adding as a child of the node.<gcServer enabled="false" /> <runtime>

For .NET executables, Windows Services, COM+ Server applications and XBAPs:

Navigate to the application.
Using an XML editor, open the file , where is the name of your application. If the fmyApplication.exe.config myApplication.exe *.exe.config
ile does not exist, create it.
Set the <gcServer> node to , as follows:enabled="false"

<configuration>
 <runtime>
 <gcServer enabled="false" />
 </runtime>
</configuration>

Save the file. There is no need to rebuild your application because the configuration file will be loaded automatically by .NET when the
application runs.

If you continue to experience problems, please contact .Redgate Support

http://msdn.microsoft.com/en-us/library/ms229357.aspx
http://msdn.microsoft.com/en-us/library/ms229357.aspx
http://redgatesupport.red-gate.com/home

The system cannot find the file specified

When profiling an ASP .NET web application, ANTS Performance/Memory Profiler may throw the following exception:

Unable to start profiler - exception details
System.ComponentModel.Win32Exception: The system cannot find the file specified

ANTS Performance/Memory Profiler relies on an number of programs to be installed on the system to work properly. Some are web browser
components and some are to verify that application pools are running. In short, this error can occur if one of the following files are missing:

%systemroot%\shdocvw.dll
w3wp.exe, the path to which is found in the registry at HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\IISAdmin\ImagePa

, substituting for th w3wp.exe intetinfo.exe
In IIS 6 only: %systemroot%\system32\cscript.exe
In IIS 6 only: %systemroot%\system32\iisapp.exe
In IIS 7 only: , located in the same folder as aboveappcmd.exe w3wp.exe

This page relates to both ANTS Performance Profiler and ANTS Memory Profiler.

1.
2.
3.

The type initializer for 'y.layout.hierarchic.ClassicLayerSequencer' threw an exception

This error occurs if the Microsoft Visual J# Redistributable was not correctly installed during the installation of ANTS Performance Profiler or
ANTS Memory Profiler.

To repair Microsoft Visual J# Redistributable

In , select .Control Panel Uninstall a program
Select .Microsoft Visual J# Redistributable
Click .Repair

To install a new copy of Microsoft Visual J# Redistributable

Download and install the appropriate redistributable for your system from the Microsoft website: (or)64-bit systems 32-bit systems

http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=42c46554-5313-4348-bf81-9bb133518945
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e9d87f37-2adc-4c32-95b3-b5e3a21bab2c

Unable to connect to server

When attempting to profile a web application, the browser may show an error similar to "could not connect to the remote server" after the browser
is launched by ANTS Memory Profiler.

Cause / Possible causes

When Internet Explorer runs in Protected Mode, it may launch an instance of Internet Explorer that quickly exits and restarts before showing the
website. This makes ANTS Memory Profiler believe that profiling had been completed, making it shut the site down.

How to fix

If your web browser uses "Protected Mode" you may try adding "localhost" to the list of trusted sites as a workaround.

If you continue to experience problems, please contact .Redgate Support

http://redgatesupport.red-gate.com/home

Unexpected behavior and technical questions

Profiler prompts for location of source code which is not your own source code
Profiling a Windows service fails if the service uses a system account
Profiling Microsoft Office managed-code add-ins
Rebuilding performance counters
Total size of all objects does not match the memory footprint of an application

Profiler prompts for location of source code which is not your own source code

ANTS Performance/Memory Profiler may prompt for the location of a source code file that is not your own source code when viewing the results.

When ANTS Performance/Memory Profiler produces performance profiling results in detailed mode or during memory profiling, information is
collected about the assembly being profiled, including the method and object names, as well as the path to the source code files for these items.
In some methods internal to the Microsoft .NET Framework, assemblies are compiled dynamically from source code internally without your
knowledge. ANTS Performance/Memory Profiler also adds these methods and the source code file to its result set. Because the source code is
created, compiled, and disposed of by the .NET Framework, it is no longer available and clicking on some internal Framework objects will
trigger ANTS Performance/Memory Profiler to ask for the new source code location because the source code used to create these temporary
assemblies no longer exists.

When this happens, the source code file name being requested is normally in the form of a globally unique identifier, for instance
'aaaaaaaa-bbbb-bbbb-bbbb-cccccccccccc.vb'

This message can be safely ignored. Alternatively, can be used to decompile source code from the executable..NET Reflector

This article relates to both ANTS Performance Profiler and ANTS Memory Profiler.

http://www.reflector.net/

Profiling a Windows service fails if the service uses a system account

Profiling a Windows service may fail if the service runs under the , or account. If the failure occurs, profilingSystem LocalService NetworkService
will stop shortly after starting and the service will not run.

The message "System.ServiceProcess.TimeoutException: Time out has expired and the operation has not been completed" may be written to the
.profiler log

To work around this problem, run the service under a specific user account instead of a predefined system account.

This failure happens because ANTS Memory Profiler sets a registry value when it enables profiling: if the service runs as , orSystem LocalService
, the profiler cannot acquire the correct value, and sets an erroneous value instead. The service then uses the erroneous registryNetworkService

value to generate a write path: because the value is incorrect, the path is unusable, and the service fails. Running under a specific user account
ensures ANTS Memory Profiler can read the system user environment variable, and will set the correct registry value.

1.
2.
3.
4.
5.
6.

Profiling Microsoft Office managed-code add-ins

ANTS Performance/Memory Profiler can profile an add-in produced for any Microsoft Office application using Visual Studio .NET. Add-ins are
typically implemented as a dll assembly loaded into the relevant Office application's process. Therefore, you would profile the application that
loads your dll in order to get the performance and memory usage data for it from ANTS Performance/Memory Profiler.

For instance, to profile the performance of an add-in for Microsoft Excel, you would:

Start the profiler
Choose .NET Desktop Application.
Browse for and select Excel.exe ().c:\program files\Microsoft Office\OFFICE12\Excel.exe
Choose to profile if your assembly has a corresponding PDB file, or choose another option. Only .NET methods that have source code
Excel will start; perform whatever actions are necessary to invoke methods in your add-in.
Take snapshots (ANTS Memory Profiler) or view the performance profiling results in ANTS Performance Profiler.

The results reflect the managed code performance of your add-in's .NET code.

This article relates to both ANTS Performance Profiler and ANTS Memory Profiler.

1.
2.

Rebuilding performance counters

In certain situations, the performance counters may be missing from the performance counter results during a profiler session.

There are many possible causes for the problem, but they all can usually be fixed by rebuilding the performance counter objects.

To rebuild your performance counters:

If you're running or , to rebuild the , open aWindows 2000, Windows XP Windows Server 2003 Windows performance counters
command prompt and run the following commands:

cd %systemroot%\system32
lodctr /R

and then reboot the computer. Other performance counters may exist outside the folder.system32
If you need to rebuild the , locate the file . This should reside in the .NET performance counters corperfmonsymbols.ini
%systemroot%\microsoft.net\framework\v2.0.50727 directory, but may be in %systemroot%\inf\.netFramework as well. Use lodctr against
this file to rebuild the performance counters from a command prompt by running the following commands:

unlodctr .NetFramework
 cd %systemroot\inf\.netFramework (or the folder containing
corperfmonsymbols.ini)
 lodctr corperfmonsymbols.ini

It is also possible that performance objects are disabled and therefore unavailable to query.

The tool from Microsoft will show you whether or not a particular performance object is enabled and allow you to enable EXCTRLST.exe
it. This tool can be downloaded for free from Microsoft

If any of the performance counters are not enabled, they will not appear in the ANTS Profiler performance counter graph.

On some versions of Windows, performance counters can be disabled globally by setting the registry value
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib to "1".
If you're on a , please follow the following instructions:newer operating system

Open a command prompt as Administrator
Enter the following commands:

C:
cd windows\system32
LodCtr.exe /S:Backup_Original.INI
LodCtr.exe /R:PerfStringBackup.INI

(The /S: switch lets you backup the performance counters before you rebuild with the /R: switch.)

Use perfmon to check the counters display correctly.

For more information, see How to manually rebuild Performance Counter Library values (Microsoft KB)

For more information see How to rebuild performance counters (TechNet)

http://download.microsoft.com/download/win2000platform/exctrlst/1.00.0.1/nt5/en-us/exctrlst_setup.exe
http://support.microsoft.com/kb/300956
http://blogs.technet.com/b/yongrhee/archive/2009/10/06/how-to-rebuild-performance-counters-on-windows-vista-server2008-7-server2008r2.aspx

Total size of all objects does not match the memory footprint of an application

There is usually a disparity between the total size of all objects allocated on the managed heap (reported by ANTS Memory Profiler) and the
amount of memory shown to be used by the entire process, for example the memory shown in Windows Task Manager.

This is not a bug in ANTS Memory Profiler, but rather a difference in the type of memory being tracked by ANTS Memory Profiler.

The total memory used by a .NET application comprises:

the application image itself
the .NET runtime
any application extensions (dlls) loaded by the process being profiled.

These items are not tracked by ANTS Profiler and therefore are not reflected in the results.

Additionally, .NET memory management typically allocates more heap memory than what is actually requested by your application. Because
memory allocation is expensive, .NET will request extra memory for the managed heap and work inside this memory rather than continually
requesting more memory from the operating system in smaller increments. For this reason, even the process managed heap size reported by the
".NET CLR Memory" performance object may be larger than what is reported by ANTS Memory Profiler.

In order to see really specific usage information about the memory of a process, the most accurate way is to use a debugger. Redgate have
produced a free tool that graphically displays a .NET application's memory space. Memory Tracker can illustrate some of the memory issues
discussed in this article. You may download this tool from Redgate Labs

http://www.red-gate.com/labs/free-tools/

Finding the ANTS Memory Profiler log files

Log files collect information about the application while you are using it. These files are useful to us if you have encountered a problem.

To open the folder where the log files are stored:

On the menu, click :Help Open Log Folder

By default the log files are stored in:

%ALLUSERSPROFILE%\Local Settings\Application Data\Red Gate\ProductName

If you are profiling an ASP.NET application in IIS, additional log files for the service and the trigger process are created. These are stored by
default in:

%LOCALAPPDATA%\Red Gate\ProductName

The local app data folder used is that of the user who launched the product.

The information on this page relates to ANTS Performance Profiler, ANTS Memory Profiler and Exception Hunter only.

For other products, see Log file locations

https://documentation.red-gate.com/display/XX/Log+file+locations

Release notes and other versions

Version 8.8 (current) October 13th, 2015 (latest) Release notes Documentation

 8.7Version July 17th, 2015 Release notes

8.6Version April 24th, 2015 Release notes

Version 8.5 February 18th, 2015 Release notes

Version 8.2 December 19th, 2013 Release notes

Version 8.1 November 5th, 2013 Release notes

Version 8.0 October 2nd, 2013 Release notes

Version 7.4 April 5th, 2012 Release notes Documentation

 Version 7.3 March 6th, 2012 Release notes

Version 7.2 November 30th, 2011 Release notes

Version 7.1 August 4th, 2011 Release notes

Version 7.0 January 18th, 2011 Release notes

Version 6.0 August 23rd, 2010 Release notes Documentation (PDF)

Version 5.2 January 20th, 2010 Release notes Documentation (PDF)

Version 5.1 July 13th, 2009 Release notes See version 5.2 documentation

Version 5.0 June 18th, 2009 Release notes Documentation (PDF)

Before version 5.0, ANTS Memory Profiler was part of the ANTS Profiler product. No documentation is available for ANTS Profiler.

If you need to install an old version of ANTS Memory Profiler, go to .Download old versions of products

https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.8+release+notes
https://documentation.red-gate.com/display/AMP8
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.7+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.6+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.5+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.2+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.1+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+8.0+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+7.4+release+notes
https://documentation.red-gate.com/display/AMP7
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+7.3+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+7.2+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+7.1+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+7.0+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+6.0+release+notes
http://documentation.red-gate.com/pages/worddav/preview.action?fileName=ANTS+Memory+Profiler+6_0.pdf&pageId=17271354
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+5.2+release+notes
http://documentation.red-gate.com/pages/worddav/preview.action?fileName=ANTS+Memory+Profiler+5_2.pdf&pageId=17271354
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+5.1+release+notes
https://documentation.red-gate.com/display/AMP8/ANTS+Memory+Profiler+5.0+release+notes
http://documentation.red-gate.com/pages/worddav/preview.action?fileName=ANTS+Memory+Profiler+5_0.pdf&pageId=17271354
http://www.red-gate.com/downloadoldversions

ANTS Memory Profiler 7.4 release notes

April 5th, 2012

Fixes

Various bug fixes

Known issues

Results files created in ANTS Memory Profiler 7.4 cannot be opened in earlier versions of the product.

ANTS Memory Profiler 7.3 release notes

March 6th, 2012

New features

This version adds support for profiling websites in and for .IIS Express SharePoint 2010

ANTS Memory Profiler 7.2 release notes

November 30th, 2011

Fixes

Re-enabling custom naming for snapshots taken via the snapshot API
Preventing the instance list from refreshing on every click when accessed from the instance categorizer
Resolving a rare race condition in the profiler core

ANTS Memory Profiler 7.1 release notes

August 4th, 2011

New features

As of this version, profiling with Silverlight 5 beta is supported.
Although full support for Sharepoint 2010 is not built into this version, a workaround may allow you to profile managed code running on a
Sharepoint 2010 server with IIS 7. For details, see .Profiling Sharepoint 2010

Fixes

This version fixes a small number of bugs present in version 7.0. These include improvements to DEP (data execution prevention) handling, and
clearer error messaging if a specified ASP.NET site cannot be found.

This release also fixes a bug in Red Gate's ANTS Performance Profiler, should you have this program installed. The fix, for a bug that silently
disabled the "Check for updates on startup" setting, sets a registry key value; this value is set even if you do not have ANTS Performance Profiler
installed. The key can safely be ignored.

This fix will not overwrite any "check for updates" preference that you have set manually, and the setting can also still be changed: on the mHelp
enu in ANTS Memory Profiler or ANTS Performance Profiler, click and select or clear the "Check for updates on startup"Check for updates...
checkbox.

ANTS Memory Profiler 7.0 release notes

January 18th, 2011

New features

Redesigned summary. This gives immediate feedback on where your memory is being used, and now warns you if problems with large
object heap fragmentation are detected.
New Instance Categorizer graph. Groups the instances of the class that you are investigating by the shortest path to the GC root,
allowing you quickly to spot any paths that should not hold references to the instances.
Redesigned and reorganized filters.
New 'show only survivors in growing classes' filter highlights any classes where no instances were disposed between two snapshots,
even though the number of instances of that class increased.
Field properties now available on the Instance Retention Graph.
Improved support for WPF: Dependency properties now shown with other field properties.
Snapshot API lets you take snapshots from your code.

See .Upgrading from ANTS Memory Profiler version 6 to version 7

Known issues

Limitations of the .NET 1.1 framework restrict the memory information ANTS Memory Profiler can retrieve. Specifically, with .NET 1.1 applications:

Object disposal cannot be tracked.
LOH fragmentation detection is less reliable.
The generation in which an object is held cannot be identified.
Field values and static variable values cannot be displayed.
Profiling runs more slowly.

The following feature requires the .NET 4.0 runtime and Windows Vista or later:

Attach to process

Additionally:

For some types of application, you may have to run ANTS Memory Profiler as an administrator.
If you have Internet Explorer 7 on Windows Vista x64 or Windows Server 2008 x64, it is not possible to profile ASP.NET websites on IIS.
Upgrading to Internet Explorer 8 will solve this problem.
On Windows Vista and Windows 7, after profiling IIS using attach to process, ANTS Memory Profiler 7 sometimes cannot stop the
session. If this happens, restart ANTS Memory Profiler before starting a new profiling session.
In some cases, Windows Services do not restart properly after profiling. Use services.msc to restart services if required.
To profile an XBAP application, Internet Explorer must be set as your default browser and it must be closed before profiling.
To profile a .NET 4 process, you must first disable concurrent garbage collection.
A limitation in Windows means that it is not possible to successfully attach to a .NET 4 process more than once.
SharePoint 2010 is not supported.
The snapshot API does not work with Silverlight applications, due to security restrictions in Silverlight.

ANTS Memory Profiler 6.0 release notes

August 23rd, 2010

Features, Enhancements and Bug Fixes

This release of ANTS Memory Profiler adds full support for memory profiling applications running under .NET 4 and Silverlight.

It also includes the vastly improved IIS support, along with XBAP support, that we first shipped with ANTS Profiler 4.3.

ANTS Performance Profiler 6, also available from , is our new performance profiler, which includes support for .NET 4 andwww.red-gate.com
Silverlight applications and also allows you to record and analyze SQL and File I/O activity.

Supported .NET Framework Versions

1.1
2.0
3.0
3.5
4.0
Silverlight 4

The .NET 2.0 runtime must be installed in order for ANTS Memory Profiler to run.

Supported OS Versions

Windows XP SP2 or later
Windows Server 2003
Windows Vista
Windows Server 2008
Windows 7
Windows Server 2008 R2

Supports 32-bit and 64-bit versions of all listed OSs. Windows 2000 is no longer supported.

The following feature requires the .NET 4.0 runtime and Windows Vista or
later:

Attach to process

Other System Requirements

512 MB RAM (minimum)
 Internet Explorer 6+
 1 GB free hard disk space
Supported Visual Studio Versions

The following versions of Microsoft Visual Studio are supported by the ANTS Memory Profiler 6 add-in:

Visual Studio 2005
Visual Studio 2008
Visual Studio 2010

Known Issues

For some types of application, you may have to run ANTS Memory Profiler as an administrator.

On Windows Vista and Windows 7, after profiling IIS using attach to process, ANTS Memory Profiler 6 sometimes cannot stop the session. If this
happens, restart ANTS Memory Profiler before starting a new profiling session.

In some cases, Windows Services do not restart properly after profiling. Use services.msc to restart services if required.

To profile an XBAP application, Internet Explorer must be set as your default browser and it must be closed before profiling.

To attach to a .NET 4 process, you must first disable concurrent garbage collection.

http://www.red-gate.com

ANTS Memory Profiler 5.2 release notes

January 20th, 2010

This latest version of Red Gate’s superfast, award winning memory profiler contains numerous important bug fixes, and is a recommended
upgrade for all users of ANTS Memory Profiler 5.0 and 5.1:

Fixed infinite progress hang when taking a snapshot while profiling Sharepoint.
Now warns about object reference fix-up problem when running application with Server GC; this has been raised as a bug on Microsoft

.Connect
Fixed CouldNotMapFileException when profiling an application with more than 46,000,000 objects on a 32-bit system.
Fixed problem where Dispose tracking only worked on debug, non-optimized builds.
Fixed problem where cross-assembly references can cause a crash when multiple AppDomains are used.
Fixed intermittent GDI+ errors caused by summary view graphs.
Fixed server error from “What do I look for?” help link at bottom of class graph.
Corrected support forum URL on Getting Started form.

https://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=483764
https://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=483764

ANTS Memory Profiler 5.1 release notes

July 13th, 2009

Installer fixes

ANTS Memory Profiler 5.0 release notes

June 18th, 2009

ANTS Memory Profiler 5 is our new, completely rewritten, memory profiler. It offers the following features and benefits:

Unparalleled performance
Ability to take and analyse an arbitrarily large number of memory snapshots
Support for snapshots up to 2GB (32-bit operating systems), and 4GB (64-bit operating systems)
Arbitrary snapshot comparisons
Summary information for profiling session, individual snapshots, and snapshot comparisons
Large object heap fragmentation statistics
Extremely powerful filtering options to narrow down to the objects you really need to know about
A unique class graph view which allows you to quickly see where instances of a given class are being referenced
A unique object retention graph, which quickly allows you to see shortest reference paths to all GC roots, which will need to be broken to
fix memory leaks
Ability to profile .NET executables, ASP.NET applications and web services in IIS and web development server, services, COM+
applications, and XBAP applications.

Before version 5.0, ANTS Memory Profiler was part of the ANTS Profiler product.

	ANTS Memory Profiler 7 documentation
	Requirements
	Installing
	Licensing
	Activating
	Deactivating
	Troubleshooting licensing and activation

	Upgrading
	Upgrading to ANTS Memory Profiler 7
	Using Check for Updates
	Troubleshooting Check for Updates errors

	Understanding memory problems
	Memory management primer
	Understanding ANTS Memory Profiler

	Setting up and running a profiling session
	Profiling an executable
	Profiling a web application
	Profiling on IIS
	Profiling on IIS Express
	Profiling on web development server
	Profiling SharePoint
	Profiling SharePoint 2010

	Profiling a Silverlight application
	Profiling a Windows service
	Profiling COMplus servers
	Profiling XBAPs
	Attaching to a process
	Forcing your application to use .NET 4

	Setting up performance counters
	Adding custom performance counters

	Using the Visual Studio add-in

	Strategies for memory profiling
	Checking for large object heap fragmentation
	Fragmentation notices in ANTS Memory Profiler 7

	Checking unmanaged memory usage
	Checking managed memory usage
	Finding out what is using most memory
	Finding and fixing a memory leak
	Checking that a memory leak is fixed

	Working with ANTS Memory Profiler
	Working with the timeline
	Working with the Summary tab
	Working with the Class List
	Working with the Instance Categorizer
	Working with the Instance List
	Working with the Instance Retention Graph
	Working with object filters
	Working with basic filters
	Suggestions for using filters
	Filtering by object type
	Filtering by reference

	Using the snapshot API

	Worked example
	Video tutorials

	Troubleshooting
	Common issues
	Attach to process unavailable with some anti-virus software
	Memory leaks observed when profiling WPF applications
	Silverlight in-browser profiling stops with no results
	Silverlight out-of-browser profiling stops with no results
	Troubleshooting SharePoint profiling
	Troubleshooting the Visual Studio add-in

	Error messages
	Couldn't open metabase
	Error stopping IISAdmin profiling IIS web application on Windows XP
	Failed to CoCreate Profiler
	No Disk
	Operation could destabilize the runtime
	The COMplus application has not loaded the .NET Framework
	The snapshot failed because .NET did not report every referenced object
	The system cannot find the file specified
	The type initializer for 'y.layout.hierarchic.ClassicLayerSequencer' threw an exception
	Unable to connect to server

	Unexpected behavior and technical questions
	Profiler prompts for location of source code which is not your own source code
	Profiling a Windows service fails if the service uses a system account
	Profiling Microsoft Office managed-code add-ins
	Rebuilding performance counters
	Total size of all objects does not match the memory footprint of an application

	Finding the ANTS Memory Profiler log files

	Release notes and other versions
	ANTS Memory Profiler 7.4 release notes
	ANTS Memory Profiler 7.3 release notes
	ANTS Memory Profiler 7.2 release notes
	ANTS Memory Profiler 7.1 release notes
	ANTS Memory Profiler 7.0 release notes
	ANTS Memory Profiler 6.0 release notes
	ANTS Memory Profiler 5.2 release notes
	ANTS Memory Profiler 5.1 release notes
	ANTS Memory Profiler 5.0 release notes

