

This Exercise book aims to guide you through the process of not only using Flyway
AutoPilot, but truly understanding and onboarding with Flyway. Throughout this document

we will present frequent tasks and challenges that Flyway is used for, with instructional
guides and learning points, aimed to scale anyone from simply sharing a change with a

fellow developer, all the way to creating scalable CI/CD deployments.

Use this guide how you see fit, and please consult any documentation found here!

Solutions Engineering
Huxley.Kendell@red-gate.com

https://documentation.red-gate.com/fd
mailto:Huxley.Kendell@red-gate.com

Welcome to the world of Flyway, where database migrations are streamlined, and

your database management becomes a well-oiled machine. This exercise book is

your essential partner on the path to mastering Flyway and harnessing the

advanced capabilities of Flyway AutoPilot as a sandbox environment to learn.

Whether you're an experienced database professional or a newcomer looking to

streamline your database operations, this book is tailored to guide you through the

journey of becoming a proficient Flyway user.

Your Learning Journey

As you flip through these pages, you'll embark on a structured journey that covers

every facet of Flyway, ensuring that you're prepared to use Flyway effectively. Here's

a brief glimpse of what you'll achieve by the time you complete this guide:

¶ Setting Up Your Environment: Begin by creating the ideal workspace for

your learning experience, allowing you to test on easily provisioned

environments, or your own depending on experience and needs.

¶ Learning Core Concepts: Dive into the foundational principles of Flyway,

including version control, schema evolution, and the creation of migration

scripts.

¶ Deploying with Flyway: Explore the world of automated database

migrations, ensuring that your deployment processes are efficient and error -

free.

¶ Achieving Scalable CI/CD Deployments: Discover how to seamlessly

integrate Flyway into your Continuous Integration/Continuous Deployment

(CI/CD) pipelines, making your database migrations scalable and hassle-

free.

Your Learning Experience

This exercise book is designed with your needs in mind. Whether you prefer a step-

by-step approach or need quick answers to specific challenges, this book

accommodates various learning styles. Each section corresponds to a specific skill

or concept, allowing you to focus on what matters mo st to you at any given time.

Additionally, we encourage you to explore the official Flyway documentation for in -

depth knowledge and keep your skills up to date as Flyway evolves.

We're excited to be your guide on this journey to mastering Flyway and Flyway

AutoPilot. By the time you reach the end of this exercise book, you'll have the

knowledge and confidence to tackle real-world database management tasks with

ease. Let's embark on this exciting learning adventure together!

BACKGROUND 5

1. Flyway 5

2. DBMS of Choice 5

3. IDE of Choice 5

4. GitHub + GitHub Actions 6

CHALLENGES: 6

1. Install AutoPilot 6

2. Make & Capture Change 7

3. Share Changes via Version Control 9

4. Create Migration Script 10

5. Add a New Target Database 11

6. Create a Report 15

7. View DryRun Script 19

8. Deploy to New Target 20

9. Rollback Changes 21

10. Perform an Info Command via CLI 22

11. Track Static Data inside of Dev 25

12. Create DML Migration Script 27

13. Create & Deploy Repeatable Script 28

14. Change Repeatable Script 29

15. Create Additional Branch (maybe go higher, probably higher) 7

16. Cherry Pick Deployment 31

17. Deploy Via Git Actions Pipeline 36

18. Add Additional Deployment Step inside YML 41

19. Baseline Scripting 44

ADDITIONAL LEARNING: 46

1. Flyway

¶ It is important that we have installed Flyway Desktop on to the

machines wishing to participate, Flyway AutoPilot is configured to

allow for teams to work together so the scope does not neem to be

limited to individual members .

¶ A link to download everything needed can be found here!

2. DBMS of Choice

¶ We will need access to the DBMS of your choice, Flyway AutoPilot currently

supports MS SQL Server & PostgreSQL, with more on the roadmap. So, make

sure each member has access to a shared or dedicated environment to test

and learn.

3. IDE of Choice

¶ Access to some kind of DBMS IDE is also needed, we recommend SQL

Server Management Studio (SSMS) for SQL Server and PG Admin for PG, but

the choice is up to you!

https://www.red-gate.com/products/flyway/enterprise/trial/

4. GitHub + GitHub Actions

¶ Ability to create a GitHub repository, and a GitHub Actions pipeline. This will

be configured automatically but access is still needed .

1. The first step to completing this exercise book is too make sure we have Flyway

AutoPilot installed, this gives us the custom environment to prope rly learn and

onboard.

2. This is NOT a mandatory step, you are more than welcome to use this book to guide

learning on a different environment, but Flyway AutoPilot is set up to follow these

scenarios, if you desire to this without AutoPilot make sure to ha ve a project set-up

and refer to Redgate Documentation for additional support!

3. A link to everything you could need is here!

Once you have completed the video and setup, come back to the exercise book to

https://documentation.red-gate.com/fd/quickstart-flyway-autopilot-215154689.html

being your learning!

1. Flyway will pick up any branches that were prior made on the Git repository, or made

elsewhere! But should the need come up during development or during the use of

Flyway, we can also create a branch on the Desktop too, allowing us to keep

changes isolated by branches and then merge them into main when ready.

2. Flyway works exceptionally where when coupled with a good branching strategy, so

mfut!ifbe!up!uif!ǆWfstjpo!DpouspmǇ!ubc!boe!tff!gps!pvstfmwft!ipx!fbtz!ju!jt"

Dmjdl!ǆ,!Dsfbuf!Ofx!CsbodiǇ!boe!hjwf!ju!b!obnf"

3. We can then change to any branch, this means any schema / migration changes we

make are currently isolated to that branch, allowing other teams / projects to code

independently!

1. The very first thing we want to showcase is simple developer integration, the ability

to make a change on a dev environment and share that change with other

developers. Head over to the IDE of your choice, and create a object of your choice

inside the ǂWidgetDevǃ Database!

The screenshot below shows me creating a table!

2. Once the change has been made, head over to Flzxbz!boe!dmjdl!joup!uif!ǆTdifnb!

NpefmǇ!Ubc/!Uijt!xjmm!ejtdpwfs!boz!dibohft!zpv!ibwf!nbef"!Zpv!dbo!dmjdl!po!uif!

object name for a breakdown of how this object has evolved, and once happy you

can decide to bring this object into the Flyway Project!

By clicking Save to Project, we are not deploying any changes, just simply bringing it

into our Flyway Project, to track and use at a later time!

3. This feature allows us to track any and all objects inside our database and gain a

higher level of visibility into how our DB evolves.

1. It is then important that these changes leave our own personal copy of the

repository, so our next step is to try and share via Version Control.

2. After we Save a change to the project, like we did in Step 2., we will be given a

prompt to ǆDpnnju!DibohftǇ"!

3.1. Jg!uijt!jt!tljqqfe-!xf!dbo!obwjhbuf!up!uif!tbnf!qbhf!cz!dmjdljoh!joup!uif!ǆWfstjpo!

DpouspmǇ!ubc/!Gpmmpx!uif!jnbhf!cfmpx!up!dpotusvdu!b!dpnnju-!boe!qvti!joup!the

central repository!

3. The key steps, as shown above, include:

- Choosing the changes to the repository that you wish to share.

- Writing a Commit Message to communicate the changes with others .

- Committing & Pushing the changes!

- Remember to check which branch you are using before committing any changes!

4. As mentioned, this allows us to not only track changes inside our repository, but to

seamlessly share any changes between one another. Once we start creating

migration scripts, it will also al lows us to pass them to our CI/CD pipelines! But

uibuǃt!gps!b!mbufs!dibmmfohf"

1. With the state of development now being ahead of production, it is time to use one

of Flyways biggest value points and generate a migration script encom passing our

changes. When ready, ifbe!pwfs!up!uif!ǆHfofsbuf!NjhsbujpotǇ!ubc"

2. Flyway will begin to compare our newly updated Schema Model (this is where Step

2 Saved our changes too) against the state of Production! The first screen (Seen

below) shows showcases all the changes that we as a Dev Team have made to the

schema model, that has yet to be turned into a Versioned Script. Click on one of the

object names, to see how the object has evolved.

3. We have the choice now to decide what changes we should turn into a script,

choose the new object we made, and click generate scripts!

4. As you should of seen, Flyway creates two scripts for us! A forward migration script,

and a corresponding rollback script. This not only streamlines development by

saving any time spent on writing scripts, but also gives instant access to rollback

any changes we did not anticipate! Save the script, and we are ready to begin

deploying!

1. An important part of Flyway is its ability to deploy, head over to the migrations tab

to begin to see what we can do!

- On this page we get an overview of all the scripts that make up our Flyway Project

(1).

- We can also chose to Target an environment, this will give a much clearer picture

of the state of our deployments, as we track the version of each Database (2).

2. As you may notice, we only have our Development & Production environments

currently, lets try and add the Testing environment we have by clicking the plus

button (3)!

3. We need to provide a few details before we can add our new environment, luckily for

us Flyway makes it easy. Reference the image below to see the information we

need to supply:

- ID: This is a parameter we can assign the DB, to allow us to reference it by name

instead of the longer JDBC when it comes to using the CLI.

- Display Name: This is the name Flyway will display for this environment.

- Server, Port & Instance: These reference the location of our instance!

- Database Name: The name of the DB we intend to add!

- If you need to Encrypt or tell Flyway to Trust Server Certificate we can also enable

this here!

- Authentication: Set the kind of Authentication we should use, this will be dictated

by the configuration of your Server.

- JDBC: Flyway makes use of its Java API for communicating with Databases. The

JDBC will be created for you when you add the information above, you can use this

to copy the URL of your Database or to manually add it and watch Flyway change

the parameters above!

- Save To Project Settings: Saving to the Project settings will share this with anyone

else on the repository, so it is smart for any shared configuration to be saved here,

such as downstream environments.

- Save To User Settings: Saving to User settings is useful as this will not be shared

with anyone else, so settings like a dedicated Dev environment which are personal,

should be saved to user settings to avoid overwriting any changes!

4. Fill out the details for our testing environment as seen in the image above, or for

your own requirements, and click Test & Save! Once done, it will display more

information into the state of our Database as seen below!

- Category: This tells us what type of script it is. This can be:

Baseline: This sets the starting point for our scripts, any pre-existing parts of the database

will be comprised here. These scripts are used when deploying to a fresh database, and allow

us to separate subsequent changes made with Flyway from objects that are already in

production!

Versioned: These are scripts that encompass the changes needed to move to a new version

of the database, versioned scripts allow us to manage the state of different DBs much easier,

boe!xjui!Gmzxbz!xf!epoǃu!ibwf!up!xpssz!about deploying scripts manually. This can make

rolling forwar d, and backwards much more streamlined!

Undo: These are scripts that allow us to rollback a version script, each Version Script you

make can and should have a rollback script, meaning whenever we deploy a change, we also

a script to undo the change!

Repeatable: These are scripts that we want to run multiple times , anytime Flyway detects that

the script has been altered, it will deploy the script on the next migration!

- Version: This indicates the specific version of the database, so we can see any

information around that specific version of the database and the script used to

move to it!

- Undoable: Indicates if this version is undoable, allowing us to rollback to the prior

version instantly. If it is not undoable, a rollback script needs to be supplied!

- State: State of this version, can either be successful which indicates the script has

already been deployed or Pending, indicating the script is yet to be deployed to this

environment.

Also marked on the image (5) is the command window , this is where we can

perform Flyway commands against this particular database , alongside any

additional parameters. This will be explored throughout this exercise book!

1. A useful feature of Flyway is its ability to generate reporting, this can include:

- Code: This analyse your code, and checks for any rules that have been broken that

you set!

- Changes: This shows how objects have evolved, and the code differences used to

make these changes.

- Drift: This checks for any drift, drift indicates any changes that have been made to

the database outside of the scope of Flyway, so either direct changes to the

environment or scripts that have been deployed elsewhere.

- Dry run: This produces a dry run script, which showcases what is going to happen

to this database on the next migration, pre-deployment! Allowing you to analyse

changes before they happen!

All of these reports can be collated into one HTML report, and can be created

retroactively allowing for much higher visibility before we make changes to

downstream environments!

2. We have successfully added our Test database as a target, and one common best

practice is to generate a set of reports before we decide to deploy any scripts, so

mfuǃt!usz!boe!ep!uibu/!Uif!gjstu!tufq!jt!up!nblf!tvsf!xf!bsf!ubshfujoh!pvs!Uftu!EC!jo!

the Migrations tab and select the Check Command inside the command window as

seen below.

3. We need to know decide what kind of report we wish to generate, for this example

we can try and generate a report that includes code changes, a summary of any drift

on our database and a copy of the dry run script! Opx!mfuǃt!tfmfdu!uif!uzqf!pg!sfqpsut!

we want!

4. As we are doing this retroactively, before deploying. Flyway will need to be provided

with a database to act as a sandbox and generate the report, to do this we need to

tvqqmz!ju!xjui!uif!ǂDifdlǃ!ebubcbtf!xf!ibwf!jotjef!pg!pvs!Tfswfs/!Uijt!jt!b!diboce to

showcase the additional parameters functionality of flyway, to begin to customise

our commands. To do this particular parameter, dmjdl!joup!ǂBewbodfe!Tfuujohtǃ!boe!

find the ǂdifdl/cvjmeVsmǃ parameter.

If you need support finding the ǂDifdl.BuildUrmǃ!reference back to Challenge 5 and

add the Check Database as a new target to be provided with a JDBC!

5. The final step is to run the command and review the report it generates for us!

As we should be able to see, it provides us with all the reports we requested giving

us a much higher level of visibility into each of our databases.

Remember, we can fully automate this process!

1. Now we have generated a report on the future deployment, we can have a much

higher level of confidence going into our deployment. Navigate your way back to the

njhsbujpot!ubc-!boe!ubshfu!pvs!ǂUftuǃ!Ebubcbtf!tp!xf!dbo!cfhjo!uif!qspdftt!pg!opx!

deploying those changes we have seen.

2. The final level of clarity we can gain from Flyway before making our changes, is by

viewing a DryRun Script of the actual deployment, just like we generated in our

Report the challenge before.

3. Uif!dpnnboe!xf!xjmm!vtf!up!efqmpz!pvs!dibohft!jt!b!cbtjd!ǂNjhsbufǃ!dpnnboe-!

without any additional parameters a migrate command will check for any pending

scripts, and deploy them in order.

4. Cfgpsf!xf!efqmpz-!usz!boe!dmjdl!ǆWjfx!Esz!Svo!TdsjquǇ!up!wjfx!uif deployment

before we go ahead and do so!

5. If everything in the Dry Run Script looks good, we can either Run Migrate

straight from this page, or close and run the Migrate tab. For the sake of this

exercise, anaylse the dry run script and click close so we can follow the next

challenge!

1. We now have a very high level of confidence in our deployment, so the final step is

to run the migrate command and bring our Test database to the latest version!

2. If you are not there already, head to the migrate tab, double check we are targeting

our Test environment then click ǂSvo!Njhsbufǃ/

