

This Exercise book aims to guide you through the process of not only using Flyway
AutoPilot, but truly understanding and onboarding with Flyway. Throughout this document

we will present frequent tasks and challenges that Flyway is used for, with instructional
guides and learning points, aimed to scale anyone from simply sharing a change with a

fellow developer, all the way to creating scalable CI/CD deployments.

Use this guide how you see fit, and please consult any documentation found here!

Solutions Engineering
Huxley.Kendell@red-gate.com

https://documentation.red-gate.com/fd
mailto:Huxley.Kendell@red-gate.com

Welcome to the world of Flyway, where database migrations are streamlined, and

your database management becomes a well-oiled machine. This exercise book is

your essential partner on the path to mastering Flyway and harnessing the

advanced capabilities of Flyway AutoPilot as a sandbox environment to learn.

Whether you're an experienced database professional or a newcomer looking to

streamline your database operations, this book is tailored to guide you through the

journey of becoming a proficient Flyway user.

Your Learning Journey

As you flip through these pages, you'll embark on a structured journey that covers

every facet of Flyway, ensuring that you're prepared to use Flyway effectively. Here's

a brief glimpse of what you'll achieve by the time you complete this guide:

• Setting Up Your Environment: Begin by creating the ideal workspace for

your learning experience, allowing you to test on easily provisioned

environments, or your own depending on experience and needs.

• Learning Core Concepts: Dive into the foundational principles of Flyway,

including version control, schema evolution, and the creation of migration

scripts.

• Deploying with Flyway: Explore the world of automated database

migrations, ensuring that your deployment processes are efficient and error-

free.

• Achieving Scalable CI/CD Deployments: Discover how to seamlessly

integrate Flyway into your Continuous Integration/Continuous Deployment

(CI/CD) pipelines, making your database migrations scalable and hassle-

free.

Your Learning Experience

This exercise book is designed with your needs in mind. Whether you prefer a step-

by-step approach or need quick answers to specific challenges, this book

accommodates various learning styles. Each section corresponds to a specific skill

or concept, allowing you to focus on what matters most to you at any given time.

Additionally, we encourage you to explore the official Flyway documentation for in-

depth knowledge and keep your skills up to date as Flyway evolves.

We're excited to be your guide on this journey to mastering Flyway and Flyway

AutoPilot. By the time you reach the end of this exercise book, you'll have the

knowledge and confidence to tackle real-world database management tasks with

ease. Let's embark on this exciting learning adventure together!

BACKGROUND .. 5

1. Flyway 5

2. DBMS of Choice 5

3. IDE of Choice 5

4. GitHub + GitHub Actions 6

CHALLENGES: ... 6

1. Install AutoPilot 6

2. Make & Capture Change 7

3. Share Changes via Version Control 9

4. Create Migration Script 10

5. Add a New Target Database 11

6. Create a Report 15

7. View DryRun Script 19

8. Deploy to New Target 20

9. Rollback Changes 21

10. Perform an Info Command via CLI 22

11. Track Static Data inside of Dev 25

12. Create DML Migration Script 27

13. Create & Deploy Repeatable Script 28

14. Change Repeatable Script 29

15. Create Additional Branch (maybe go higher, probably higher) 7

16. Cherry Pick Deployment 31

17. Deploy Via Git Actions Pipeline 36

18. Add Additional Deployment Step inside YML 41

19. Baseline Scripting 44

ADDITIONAL LEARNING: ..46

1. Flyway

• It is important that we have installed Flyway Desktop on to the

machines wishing to participate, Flyway AutoPilot is configured to

allow for teams to work together so the scope does not neem to be

limited to individual members.

• A link to download everything needed can be found here!

2. DBMS of Choice

• We will need access to the DBMS of your choice, Flyway AutoPilot currently

supports MS SQL Server & PostgreSQL, with more on the roadmap. So, make

sure each member has access to a shared or dedicated environment to test

and learn.

3. IDE of Choice

• Access to some kind of DBMS IDE is also needed, we recommend SQL

Server Management Studio (SSMS) for SQL Server and PG Admin for PG, but

the choice is up to you!

https://www.red-gate.com/products/flyway/enterprise/trial/

4. GitHub + GitHub Actions

• Ability to create a GitHub repository, and a GitHub Actions pipeline. This will

be configured automatically but access is still needed.

1. The first step to completing this exercise book is too make sure we have Flyway

AutoPilot installed, this gives us the custom environment to properly learn and

onboard.

2. This is NOT a mandatory step, you are more than welcome to use this book to guide

learning on a different environment, but Flyway AutoPilot is set up to follow these

scenarios, if you desire to this without AutoPilot make sure to have a project set-up

and refer to Redgate Documentation for additional support!

3. A link to everything you could need is here!

Once you have completed the video and setup, come back to the exercise book to

https://documentation.red-gate.com/fd/quickstart-flyway-autopilot-215154689.html

being your learning!

1. Flyway will pick up any branches that were prior made on the Git repository, or made

elsewhere! But should the need come up during development or during the use of

Flyway, we can also create a branch on the Desktop too, allowing us to keep

changes isolated by branches and then merge them into main when ready.

2. Flyway works exceptionally where when coupled with a good branching strategy, so

lets head to the “Version Control” tab and see for ourselves how easy it is!

Click “+ Create New Branch” and give it a name!

3. We can then change to any branch, this means any schema / migration changes we

make are currently isolated to that branch, allowing other teams / projects to code

independently!

1. The very first thing we want to showcase is simple developer integration, the ability

to make a change on a dev environment and share that change with other

developers. Head over to the IDE of your choice, and create a object of your choice

inside the ‘WidgetDev’ Database!

The screenshot below shows me creating a table!

2. Once the change has been made, head over to Flyway and click into the “Schema

Model” Tab. This will discover any changes you have made! You can click on the

object name for a breakdown of how this object has evolved, and once happy you

can decide to bring this object into the Flyway Project!

By clicking Save to Project, we are not deploying any changes, just simply bringing it

into our Flyway Project, to track and use at a later time!

3. This feature allows us to track any and all objects inside our database and gain a

higher level of visibility into how our DB evolves.

1. It is then important that these changes leave our own personal copy of the

repository, so our next step is to try and share via Version Control.

2. After we Save a change to the project, like we did in Step 2., we will be given a

prompt to “Commit Changes”!

3.1. If this is skipped, we can navigate to the same page by clicking into the “Version

Control” tab. Follow the image below to construct a commit, and push into the

central repository!

3. The key steps, as shown above, include:

- Choosing the changes to the repository that you wish to share.

- Writing a Commit Message to communicate the changes with others.

- Committing & Pushing the changes!

- Remember to check which branch you are using before committing any changes!

4. As mentioned, this allows us to not only track changes inside our repository, but to

seamlessly share any changes between one another. Once we start creating

migration scripts, it will also allows us to pass them to our CI/CD pipelines! But

that’s for a later challenge!

1. With the state of development now being ahead of production, it is time to use one

of Flyways biggest value points and generate a migration script encompassing our

changes. When ready, head over to the “Generate Migrations” tab!

2. Flyway will begin to compare our newly updated Schema Model (this is where Step

2 Saved our changes too) against the state of Production! The first screen (Seen

below) shows showcases all the changes that we as a Dev Team have made to the

schema model, that has yet to be turned into a Versioned Script. Click on one of the

object names, to see how the object has evolved.

3. We have the choice now to decide what changes we should turn into a script,

choose the new object we made, and click generate scripts!

4. As you should of seen, Flyway creates two scripts for us! A forward migration script,

and a corresponding rollback script. This not only streamlines development by

saving any time spent on writing scripts, but also gives instant access to rollback

any changes we did not anticipate! Save the script, and we are ready to begin

deploying!

1. An important part of Flyway is its ability to deploy, head over to the migrations tab

to begin to see what we can do!

- On this page we get an overview of all the scripts that make up our Flyway Project

(1).

- We can also chose to Target an environment, this will give a much clearer picture

of the state of our deployments, as we track the version of each Database (2).

2. As you may notice, we only have our Development & Production environments

currently, lets try and add the Testing environment we have by clicking the plus

button (3)!

3. We need to provide a few details before we can add our new environment, luckily for

us Flyway makes it easy. Reference the image below to see the information we

need to supply:

- ID: This is a parameter we can assign the DB, to allow us to reference it by name

instead of the longer JDBC when it comes to using the CLI.

- Display Name: This is the name Flyway will display for this environment.

- Server, Port & Instance: These reference the location of our instance!

- Database Name: The name of the DB we intend to add!

- If you need to Encrypt or tell Flyway to Trust Server Certificate we can also enable

this here!

- Authentication: Set the kind of Authentication we should use, this will be dictated

by the configuration of your Server.

- JDBC: Flyway makes use of its Java API for communicating with Databases. The

JDBC will be created for you when you add the information above, you can use this

to copy the URL of your Database or to manually add it and watch Flyway change

the parameters above!

- Save To Project Settings: Saving to the Project settings will share this with anyone

else on the repository, so it is smart for any shared configuration to be saved here,

such as downstream environments.

- Save To User Settings: Saving to User settings is useful as this will not be shared

with anyone else, so settings like a dedicated Dev environment which are personal,

should be saved to user settings to avoid overwriting any changes!

4. Fill out the details for our testing environment as seen in the image above, or for

your own requirements, and click Test & Save! Once done, it will display more

information into the state of our Database as seen below!

- Category: This tells us what type of script it is. This can be:

Baseline: This sets the starting point for our scripts, any pre-existing parts of the database

will be comprised here. These scripts are used when deploying to a fresh database, and allow

us to separate subsequent changes made with Flyway from objects that are already in

production!

Versioned: These are scripts that encompass the changes needed to move to a new version

of the database, versioned scripts allow us to manage the state of different DBs much easier,

and with Flyway we don’t have to worry about deploying scripts manually. This can make

rolling forward, and backwards much more streamlined!

Undo: These are scripts that allow us to rollback a version script, each Version Script you

make can and should have a rollback script, meaning whenever we deploy a change, we also

a script to undo the change!

Repeatable: These are scripts that we want to run multiple times, anytime Flyway detects that

the script has been altered, it will deploy the script on the next migration!

- Version: This indicates the specific version of the database, so we can see any

information around that specific version of the database and the script used to

move to it!

- Undoable: Indicates if this version is undoable, allowing us to rollback to the prior

version instantly. If it is not undoable, a rollback script needs to be supplied!

- State: State of this version, can either be successful which indicates the script has

already been deployed or Pending, indicating the script is yet to be deployed to this

environment.

Also marked on the image (5) is the command window, this is where we can

perform Flyway commands against this particular database, alongside any

additional parameters. This will be explored throughout this exercise book!

1. A useful feature of Flyway is its ability to generate reporting, this can include:

- Code: This analyse your code, and checks for any rules that have been broken that

you set!

- Changes: This shows how objects have evolved, and the code differences used to

make these changes.

- Drift: This checks for any drift, drift indicates any changes that have been made to

the database outside of the scope of Flyway, so either direct changes to the

environment or scripts that have been deployed elsewhere.

- Dry run: This produces a dry run script, which showcases what is going to happen

to this database on the next migration, pre-deployment! Allowing you to analyse

changes before they happen!

All of these reports can be collated into one HTML report, and can be created

retroactively allowing for much higher visibility before we make changes to

downstream environments!

2. We have successfully added our Test database as a target, and one common best

practice is to generate a set of reports before we decide to deploy any scripts, so

let’s try and do that. The first step is to make sure we are targeting our Test DB in

the Migrations tab and select the Check Command inside the command window as

seen below.

3. We need to know decide what kind of report we wish to generate, for this example

we can try and generate a report that includes code changes, a summary of any drift

on our database and a copy of the dry run script! Now let’s select the type of reports

we want!

4. As we are doing this retroactively, before deploying. Flyway will need to be provided

with a database to act as a sandbox and generate the report, to do this we need to

supply it with the ‘Check’ database we have inside of our Server. This is a chance to

showcase the additional parameters functionality of flyway, to begin to customise

our commands. To do this particular parameter, click into ‘Advanced Settings’ and

find the ‘check.buildUrl’ parameter.

If you need support finding the ‘Check.BuildUrl’ reference back to Challenge 5 and

add the Check Database as a new target to be provided with a JDBC!

5. The final step is to run the command and review the report it generates for us!

As we should be able to see, it provides us with all the reports we requested giving

us a much higher level of visibility into each of our databases.

Remember, we can fully automate this process!

1. Now we have generated a report on the future deployment, we can have a much

higher level of confidence going into our deployment. Navigate your way back to the

migrations tab, and target our ‘Test’ Database so we can begin the process of now

deploying those changes we have seen.

2. The final level of clarity we can gain from Flyway before making our changes, is by

viewing a DryRun Script of the actual deployment, just like we generated in our

Report the challenge before.

3. The command we will use to deploy our changes is a basic ‘Migrate’ command,

without any additional parameters a migrate command will check for any pending

scripts, and deploy them in order.

4. Before we deploy, try and click “View Dry Run Script” to view the deployment

before we go ahead and do so!

5. If everything in the Dry Run Script looks good, we can either Run Migrate

straight from this page, or close and run the Migrate tab. For the sake of this

exercise, anaylse the dry run script and click close so we can follow the next

challenge!

1. We now have a very high level of confidence in our deployment, so the final step is

to run the migrate command and bring our Test database to the latest version!

2. If you are not there already, head to the migrate tab, double check we are targeting

our Test environment then click ‘Run Migrate’.

3. Once the migration has complete, we will see a display letting us know all the

successful deployments, once happy click close!

4. Once we click close, we will see that Flyway refreshes its view over the

database, and has updated the table to let us know the state of

deployments, you should see that all of our scripts have been successfully

deployed!

1. So, we have seen now how we can roll forward and update the state of databases

with ease, but what if we deployed changes that had effects we now want to undo.

Maybe certain changes did not align with applicational code, regardless it is

incredibly important to have the ability to instantly rollback a change.

2. Remaining inside the migrations tab of Flyway, we can change our command to the

“Undo” command. The undo command, like our migrations command, has a

desired functionality without any parameters, and that is to simply rollback the most

recent script that has been deployed that it can.

3. In our scenario (seen above) version 6 has been deployed, and can be undone, so

that will be the version a basic undo command will target.

4. Try and see if you can undo the changes we just deployed, by changing our

command to undo and clicking “Run Undo”.

5. Hopefully you will see that Flyway was able to rollback and execute version 6s

corresponding Undo Script, head back to the migrations tab to visualise our

changes!

6. This shows that version 6 was deployed, but the undo script has been deployed and

now version 6 is back to pending!

1. One of Flyways massive benefits is its flexibility, any and all actions you perform

inside Flyway Desktop can be performed inside the Command-line interface (CLI)!

2. Navigate yourself to the migrations tab, and target any database! As you can see,

Flyway generates a graphic table showing all of our versions, and what the state of

the database is. As we have covered before, and we can see in the screenshot

below!

3. Now let’s try and reproduce this functionality, but over the CLI. You should see (see

below if not) a button in the top right of Flyway desktop, to take you straight to a

console inside the Flyway project, click this to begin!

4. The final step is to provide the console with a Flyway Info command, which is what

Flyway desktop uses to produce the table! We can do that with the following:

All Flyway CLI commands begin with the syntax of “Flyway”.

The syntax we need after this is “Info”. This grabs all the information over the

specified DB, just as Flyway does internally to produce the table!

We then need to tell Flyway which DB we wish to perform the command against, we

can do this two ways. We either use the parameter of “-Url={JDBC URL of Target

DB}” or “Environment={ID}”

Both of these parameters can be found inside the “configure target database” (seen

below)

5. You should see the following, successful output:

You’ll notice it also produces a report with its finding, feel free to check that out too!

1. Flyway aims to be your “end-to-end” DevOps tool, and apart of that value is making

sure we can track not just schema changes but data changes as well. Flyway

comes built in with the ability to track Static Data! Head to the Schema Model tab, to

begin this challenge!

2. For this challenge, click into Static Data & Comparisons, and try and add a table we

wish to track static data for!

3. We can choose our tables via the dropdown list (1)

You can then customise which columns are being tracked by clicking on (2)

You can manually add objects to track the data for by typing into (3)

You can also customise how we track schema and data, as well as deploying, by

clicking into either points labelled at (4).

4. Click Save, and watch Flyway scan for new data. Feel free to add any data into our

tables, and to finish this challenge track that data changes by Saving them to the

project as we learnt before!

1. We learnt how to track our static data, and by saving this data in our project we can

share between other developers and track any changes with ease.

2. The next step to being able to effectively handle any and all static data, is to be able

to turn our changes, into a DML script (Flyway is able to generate scripts that

include DML changes, DDL changes, or a combination of both).

So in the same process as before, head to the Generate Migrations tab, and create a

migration script that includes DML inside of it!

3. Check over the scripts produced, but we should now be able to successful insert our

data changes and roll them back!

1. Now is a good time to explore a new type of Script we can use, having seen both our

Versioned Scripts and our Undo Scripts.

These scripts are called repeatable scripts, and we have touched upon them briefly

so far. The fundamentals of our R scripts is that they run on every deployment, so

long as it has been altered since the last time it deployed itself.

2. So, lets head over to the migrations tab and see about adding one for ourselves!

Once inside the migrations tab, click “+ Add Migration”

3. Select Repeatable as the category, and give it some kind of description that will summise the

contents of the script as that will be its name! For me, I created a script that creates a table,

with the description “CreateTable”, and making sure the type was “.sql” as can be seen below.

4. Click Save, and as the script has not run before on this DB, we can hit migrate and watch it

deploy!

You can make the script whatever for this example, feel free to copy my code, but

try and make it something you can easily change and re-run!

1. Now that we have our repeatable

2. script, and have run it successfully, we can try and see how we get it to run again!

Flyway has what we call a checksum against each script, in this use case is very

helpful at making sure we do not deploy changes that have already been deployed!

Before we move on, we want to make sure our repeatable script is marked as

successfully deployed as seen above!

3. So, lets change our script and see about getting it to repeat itself. Flyway makes this

quite easy, click on our Repeatable script and we will be given the option to “Open in

editor”, click this and we can begin changing our name!

Just in case it opens somewhere, undesirable. We can also use Flyways handy

“Folder” icon next to the CLI icon used before, to open directly into our Project

folder. Navigate to the “Migrations” folder, and we can edit our script from there too!

4. Make whatever change you see fit, remembering that this is going to get deployed

so make it a change that will work! If in doubt, use the updated script I made, I

simply changed the name of the table it was going to create!

The important thing however, is that the script is altered!

5. Head back to Flyway, hit refresh on the migrations page, and we should now see

that Flyway now wants to deploy the script, and it has been marked as pending, as

expected!

6. Hit migrate to then deploy any pending scripts, including our repeatable script!

1. An important aspect of Flyway, is making sure we customise it too match your own

needs. One way we can do this is to use additional parameters!

2. Before we can do this, we need some pre-requisite scripts to deploy, this is a good

chance to test your own knowledge! Try and make two separate migration scripts

now, without deploying to any downstream environments! You should be able to get

to a screen similar to mine!

The simplest way to do so, is to create two changes, and only tick one box when

creating a migration script, as seen in the screenshot below!

Remember, if at any time you get stuck, you can always refresh the repository off

the main, and start over!

3. As we know, a basic migration is going to deploy both of these scripts, with the goal

of making your life as DBA easier without the need to specify.

But sometimes we want more control, so before we hit migrate go down into

Advanced settings and find the “CherryPick” parameter!

4. Flyway handily lets up copy the version name of the script, which is the value

needed for the parameter, so copy the version we want to deploy and add the

parameter!

5. Once we add the parameter, we will be presented with the view of what Flyway

intends to do. We should see that the only script not ignored is the one we selected,

if so then click migrate and watch Flyway CherryPick our deployments!

6. It is also important to make sure, as we get more experienced, we know how to do

this via the CLI. So when it comes to implementing CI/CD we feel more comfortable!

Whilst the box above the migrate command, seen below, does demonstrate and

allow for copying the script, lets try and build it out ourselves!

The output as seen below, is incredibly useful in the CI/CD, as it includes every

parameter you may need!

7. So open up the CLI as we have learnt, and enter the following parameters with the

values they need:

All Flyway CLI commands begin with the syntax of “Flyway”.

The syntax we need after this is “Migrate”. This grabs all the information over the

specified DB and deploys any pending scripts, unless specified otherwise!

We then need to tell Flyway which DB we wish to perform the command against, we

can do this two ways. We either use the parameter of “-Url={JDBC URL of Target

DB}” or “Environment={ID}”

Both of these parameters can be found inside the “configure target database”

Now we need to add our additional parameter of “-cherryPick={VersionID of

Script}”.

8. Our command should look to be the following, use the only pending script you have

as the one we wish to cherryPick!

9. We can perform two things to validate our changes, head to Flyway Desktop and

refresh the migrations tab OR look at the report it generates after our CLI

deployment!

1. What we have learnt so far should have onboarded you well, and opened your mind

to how we can use Flyway in many different ways! And after some more exploring

you should become fluid and very comfortable operating with Flyway, with the end

goal being CI/CD use!

2. Luckily for you, if you have not already seen, Flyway AutoPilot comes with full CI/CD

usage ready!

3. First of all, before moving over. Make sure we have at least one migration script

pending before, otherwise it’ll make for a very uneventful pipeline deployment!

Secondly make sure we have configured two things:

GitHub Actions Runner! The intro video should of covered this, but if in any doubt

head to the repository you made to get all the files etc, and go to “Settings > Actions

> Runners”. Any runners will appear here, but it is incredibly easy to create a new

one!

If no runner appears, click “New Self-Hosted Runner” and follow the simple creation

steps! If any issues, revert back to the video here!

Make sure the Flyway-License-Key is set. Inside the Repository head to “Settings >

Secrets and Variables > Actions”. Click “New Repository Secret” and enter the

following (including your own key, these can be gained from Redgate, if inside your

14 day trial please skip)

https://documentation.red-gate.com/fd/quickstart-flyway-autopilot-215154689.html

4. Now that we have everything ready, we just need to make sure the migration script

that has yet to be deployed, is inside our repository!

This is a case of creating a pending script, making sure we are on the correct

branch (this can be merged from GitHub if not) and then pushing our changes!

5. Head over to our repository, and click into GitHub “Actions”, from there make sure

we run the “main-Workflow” YAML and watch as our Pipeline performs its tasks!

6. As seen in image below, our pipeline has three stages. Feel free to click into any

stage and watch it perform its tasks.

This pipeline performs the following:

Build Deployment:

This deploys to a build database, a non-live database. First it performs a Flyway

Clean command, this removes any scripts that have been generated and allows us

to start from fresh, important when testing if our scripts will stand up!

Next we perform a Flyway Migrate, allowing us to deploy not just our new script but

all of our scripts together, giving a higher level of security!

Finally we perform a Flyway Undo while CherryPicking the first undo script¸ this

then tests all of our rollback scripts by rollback to the first version possible!

The build is a very good stage to run any T-SQL tests or Automated tests needed, as

it is a perfect copy of Production that is non-live!

Production Report Generation:

The second stage is important for generating our reporting, and allowing for much

higher visibility.

This stage performs the Flyway Check commands, allowing us to generate all four

types of reporting about our Flyway deployment to the production DB, before we

deploy!

Production Deployment:

Once we have deployed to a Build DB, and generated reports. We move straight to

Deploying our single new script to the production DB, this uses a basic Flyway

Migrate command, meaning if we have 1 or 100 pending scripts, the outcome will

be the same. Our Production DB at the latest version!

There is much to be desired about this pipeline, but it acts as a great starting point

for you, we will explore how this can be improved later on but feel free to explore (it

can always be re-made).

Check out the artifacts a the bottom if not already, to see the reports it makes for

us!

1. So far the pipeline has worked great, but we want it to better reflect actual

deployments. One thing that is missing is deploying to a Test database first, to

allow for more thorough testing. Head into the GitHub repository, and let’s edit the

“Main.yml” file like I am in the image below!

2. Let us first break-down our production YML before trying ourselves:

The first few lines allow us to set some configuration:

“name: Deploy Production” being what it will display as!

“runs-on” Here we can specify a different set of runners if needed, but as ours are

self hosted that’s all we need to put!

“environment:” this simply declares an environment variable, if we need to call it

later.

“needs: prod-preparation” Does this stage need something else to run first, before

it can deploy! In our case, prod needs the reports to be made first so that is why it

has been set!

Here we are declaring variables to be used later on, this means we can set it once,

instead of potentially writing multiple times!

“Stage:” What stage does this correspond too, in our case Production!

“databaseName:” What is the name of Database, needed for certain reports and

some connection strings!

“JDBC” Very important, this is added to our Flyway commands so they can be set

once in the YAML, instead of having to write Full flyway commands, whatever we

set here is what is used for the commands.

Finally, we set the actual commands we need to run, this is where we get most

freedom. We can intermix Flyway with other commands or scripts, but the important

thing is you have full control over the DB with Flyway.

In our Build stage, we run multiple commands, like clean, migrate and undo. As seen

below:

But with this particular stage, all we need is a Flyway info migrate (we can attach

info to any additional commands to perform an info before / after / before & after).

As we can see, for our Production deployments, all we needed was an info

command (to see that prior state), a migrate (to deploy any pending scripts) and a

final info command (see updated state)!

3. Ideally, we want our Test deployments to come before it deploys to Production, but

after it generates its reports! This gives us ample time to test anything needed, with

the appropriate reporting to aid us.

So, let’s see if we can update our YAML.

We ideally want all of our deployments to be repeatable and follow the same

standard, so let’s base this off our Prod deployments.

4. Starting on line ‘119’, see if you can do this yourselves, if not follow the example I

did below to get it working:

5. Ideally we should be able to re-run this by clicking “Actions > Main-

Workflow > Run Workflow (do not rerun job as it will use old YML).

If we see a successful run congratulations, if not try again! Remember

we can always revert to our stating point which we know works!

• Baselining can be very hard, if we do not understand what it is doing.

Baselining is a powerful tool for Flyway, and allows us to designate a

starting point for Flyway to work from, when working with an existing

database, we recommend creating a baseline script that reflects the

state of your objects and reference data that have already been

deployed to production so that you can generate new migrations from

this point. A baseline script is also necessary to spin up new

environments for testing purposes or when deploying to new client

sites.

(Everything Red already existed, and is therefore in the baseline script,

green did not. So, it is not included!)

• Let’s try and generate a new baseline script off of production, as we

have deployed new objects there. This is also handy to know in case

we want to ever update our baseline, potentially due to having made

too many migration scripts and / or wanting a fresh start!

The best way to do this is to navigate to our Flyway project, and delete

all of our scripts! (they will still be safe in the repository if we need to

undo our changes!)

• Once we have deleted the scripts, Flyway will recognise this and once

we try and generate a new script will prompt us to first generate a

baseline!

•

•

•

•

•

https://www.red-gate.com/hub/university/courses/flyway
https://flywaydb.org/documentation/getstarted/
https://documentation.red-gate.com/fd/database-development-using-flyway-desktop-138346961.html
https://documentation.red-gate.com/fd/database-development-using-flyway-desktop-138346961.html
https://documentation.red-gate.com/fd/flyway-cli-and-api-183306238.html
https://flywaydb.org/hub

