

Exception Hunter 3.0

June 2011

© Red Gate Software Ltd 2

Contents

Getting started ... 3

Analyzing your code .. 4

Working with assemblies ... 5

Viewing the results ... 10

Generating reports .. 14

Using the command line .. 15

Examples using the command line .. 17

Acknowledgements ... 20

© Red Gate Software Ltd 3

Exception Hunter analyzes your .NET assemblies to detect the unhandled exceptions that

can be thrown by a particular method.

This is useful, for example, to find all the possible exceptions that might be thrown by a

selected method and view the relevant stack trace to identify where those exceptions

originate. Exception Hunter allows you to navigate easily through the assembly, and also

provides a powerful search to find methods, classes, and other components of your code.

You can then view the source code to find the line of code that throws an exception.

Exception Hunter can analyze any .NET assemblies from version 1.1 to version 4.

Getting started

© Red Gate Software Ltd 4

To start analyzing your code:

1. Add the assemblies.

When you first start Exception Hunter, you need to add the assemblies (page 5) that

you want to analyze. If another assembly is referenced by an added assembly, it is

added automatically. Any referenced assembly that cannot be found on your file

system is identified as "Not Found"; you can then browse to locate it, or ignore it in

the analysis.

2. Locate the method you want to analyze.

To select the method you want to analyze, you can search for a method (page 5)

using the Find box, or drill down (page 5) to view all namespaces, classes, structs,

and their methods.

3. View the results.

Exceptions are listed by type. You can explore the list of exceptions by selecting an

exception type to see all the places in your code that the exception is thrown.

4. Drill down through the stack trace for the selected exception class.

To find situations in which the exception may be thrown, view the source code of the

method selected in the stack trace.

5. Adjust the options, if required.

From the Tools menu, select Options to display the Options dialog box, in which you

can set a number of options for how Exception Hunter analyzes your code. For

example, you can set the version of the .NET Framework for detecting exceptions, or

use a more detailed analysis, which detects more exceptions but can take longer to

run. Hints are available for each option in the Options dialog.

Notes

 Exception Hunter cannot detect exceptions that may be thrown when following

delegate calls, for example Event Handler calls.

You should therefore analyze the target methods for such delegates. We recommend

that you wrap any exceptions and throw them as a domain-specific exception type.

 Static classes appear in the list as abstract sealed classes, as this is how they are

represented by the .NET CLR.

 Runtime Exceptions (other than some NullReferenceExceptions and

InvalidCastExceptions) generated by the .NET CLR are not detected by Exception
Hunter.

Analyzing your code

© Red Gate Software Ltd 5

This topic describes how to load .NET assemblies into Exception Hunter for analysis, how

to remove assemblies and how to locate assemblies that cannot be found. It also explains

how to navigate through your code and search for a method to analyze.

Adding the assemblies

Before you add the assemblies to analyze, we recommend that you specify the version of

the .NET Framework you want to analyze them against. Changing the .NET Framework

option after adding the assemblies will remove the list of loaded assemblies. To specify

the version of .NET, from the Tools menu select Options. The default setting is version

2.0; you do not need to change the option if you use version 2.0.

When you start Exception Hunter for the first time, the main window is empty. Click

Add Assembly to display the the Add Assembly dialog box, and select the assemblies

to analyze.

Alternatively, if your project is an ASP.NET web application, click Add ASP.NET

Page to select any ASP.NET component from one of the following sources:

 web pages (*.aspx)

 controls (*.ascx)

 web services (*.asmx)

Exception Hunter compiles and then analyzes the selected component, as well as the rest

of its web application.

If you have used Exception Hunter previously, the assemblies that were added when you

closed the application are listed.

Working with loaded assemblies

All the assemblies that are referenced by assemblies you have added are loaded

automatically. For some large assemblies, the loading may take a few seconds; a

message and a green progress indicator is displayed in the status bar while the

assemblies are loading.

The icon next to the assembly name indicates its status:

 The assembly has been successfully loaded. Assemblies shown in

bold type are those that you specifically selected.

 The assembly has been successfully loaded. Assemblies shown in

normal type are referenced assemblies.

 An assembly is identified as invalid if it is not a .NET assembly,

or if the file is corrupt or inaccessible. Right-click on the

assembly and select Remove assembly to delete it from the

Working with assemblies

© Red Gate Software Ltd 6

list.

 The assembly is referenced by one of the other assemblies, but it

cannot be located in the file system. Right-click on the assembly

name and select Locate assembly to specify a location from

where it can be loaded.

You can view a tooltip for any assembly name that is too long to display in full:

Showing only documented exceptions

As an alternative to performing analysis on the referenced assemblies, Exception Hunter

can show only the exceptions each method is documented to throw, by reading

documentation from an XML file provided with the assembly. This can make analysis

faster, and may reduce irrelevant exceptions. However, the results may not include all

exceptions if the XML file is incomplete.

This option is only available for assemblies where an XML file is present.

To choose to show only documented exceptions from an assembly:

 select Use XML File next to the assembly

Resolving missing assemblies

When you add an assembly to Exception Hunter, it may reference a number of other

assemblies. If the referenced assembly cannot be located on your computer, you can

specify its location. Note that if you do not resolve missing assemblies at this stage, you

will be prompted to locate any missing assembly when you select a method to analyze.

To specify the location of a missing assembly:

1. Right-click on the assembly name and select Locate Assembly.

2. In the Locate Missing References dialog box, all the unresolved assemblies are

listed. Select the assembly you want to find then click Locate Assembly.

© Red Gate Software Ltd 7

3. In the Locate Assembly dialog box, browse to the folder containing the assembly,

select the file and click Open. Note that any other assemblies in this folder will also

be resolved automatically.

If you do not want to include a missing assembly in the analysis, or you cannot locate it,

you can choose not to be prompted for that missing assembly again. In the Locate

Missing References dialog box, select Don't ask again next to the assembly:

Removing assemblies

To remove an assembly, right-click on it and select Remove Assembly.

To remove all assemblies, on the File menu click Remove All Assemblies; alternatively

you can right-click on any assembly in the list, then click Remove All Assemblies.

Navigating through an assembly

As you navigate through the assembly by selecting a namespace, then a type (class or

struct) and then a method, the navigation bar shows how you have drilled down:

You can drag the navigation bar to see any names that are not visible; when the pointer

changes to a hand, click and drag the bar to the left or right. You can also use the arrows

at the left and right of the bar to scroll it.

 The current selection category (for example Method) is added to the right of the

navigation bar and highlighted in blue.

 You can go back to a previous category by clicking on it. For example, you can click

Assembly to view all the namespaces for that assembly.

 You can use the drop-down list within any of the displayed categories to change the

selection. For example, if you are currently looking at the list of methods for a

selected class, you can go back to select a different namespace and view the types for
that namespace.

© Red Gate Software Ltd 8

 You can use the Back and Forward buttons to return to the previous/next view.

The members available for the selected type are listed alphabetically by default. Methods

in bold are those that are called by the object class itself rather than by a super-type of

the class, and are listed first by default.

You can sort the methods by clicking on a column heading, for example to arrange the

methods by declaring type or modifiers.

Click on a method to start analyzing it for unhandled exceptions. Any missing assemblies

that you have not told Exception Hunter to ignore will be displayed in the Locate

Missing References dialog box before the results are displayed.

The exceptions that have been found are listed. For details, see Viewing the results.

Using the Find box

You can use the Find box to search for a method or other element of your code across all

the loaded assemblies.

From the drop-down list on the left, you can limit the search to the category you want:

© Red Gate Software Ltd 9

Type the first few letters of the term you want to search for. As you type, Exception

Hunter suggests a word to auto-complete the term based on the contents of the loaded

assemblies; press TAB to accept the suggestion. Type a full stop to specify that the first

part of the search term is a namespace or a class.

Exception Hunter also lists search terms that match what you type. To use a suggested

search term, click on a term in the list, or use the down arrow key to highlight it and then

press Enter.

If none of the suggested terms are suitable, type the characters you want to search for

and click .

The results are displayed in the Results panel at the bottom of the window. You can

then:

 click on a heading

This is a good way to sort by method or class, for example. Use Shift+Click to sort by

more than one heading.

 from the Find box, change the filter by selecting from the drop-down list

For example, if you initially searched using the Namespace filter, and then select

Method from the drop-down list, the results are updated to show all methods

matching the search term.

Click on a method in the Results pane to start analyzing it for unhandled exceptions. Any

missing assemblies that you have not told Exception Hunter to ignore will be displayed in

the Locate Missing References dialog box before the analysis is performed. See

Viewing the results.

© Red Gate Software Ltd 10

When you select a method (page 5), Exception Hunter lists the different classes of

unhandled exceptions that have been found, and displays a stack trace for each. The

exceptions are sorted by class.

Note that some types of exceptions may not be listed, depending on the options you have

selected. For example, if you have cleared the Detect NullReferenceExceptions and

Detect InvalidCastExceptions check boxes in the Options dialog box, then these type

of exceptions are not be listed (unless explicitly thrown by a method).

Some exceptions are shown in gray. These exceptions are not thrown directly, but they

are superclasses of exceptions that are thrown.

Move the mouse pointer over an exception class to see a tooltip that tells you how many

stack traces are available for that exception.

Viewing the results

© Red Gate Software Ltd 11

Viewing the stack trace

To view the stack traces for an exception, select the exception in the Unhandled

Exceptions pane.

Move the mouse pointer over a line in the stack trace to view tooltip information for that

line:

© Red Gate Software Ltd 12

You can drill down through a stack trace using the plus and minus buttons.

The icons in the Stack Traces pane indicate the method that throws the exception:

 the line of code that first throws the exception

 a method that throws the exception further up the stack

The color of the line below the method name indicates whether Exception Hunter can find

the PDB file associated with the assembly, and locate the source file referenced in the

PDB.

Blue text means that Exception Hunter can locate the source file containing the line of

code that throws the exception. Click to view the file.

Red text means that Exception Hunter cannot locate the source file referenced in the

PDB file.

Orange text means that Exception Hunter cannot locate a PDB file associated with the

assembly, and shows instead the assembly name.

© Red Gate Software Ltd 13

Viewing the source code

Exception Hunter shows the source code of the selected method, as you drill down

through a stack trace.

The source code view displays which exceptions each line throws. An orange icon

indicates that the currently selected exception is thrown by the line.

If no source code is available for the selected method, Exception Hunter uses technology

from Red Gate's .NET Reflector to display decompiled code for the method instead.

Notes

 Exception Hunter cannot detect exceptions that may be thrown when following

delegate calls, for example Event Handler calls.

 Static classes appear in the list as abstract sealed classes, as there is no concept of a

'static class' in the .NET CLR.

 Runtime Exceptions (other than some NullReferenceExceptions and

InvalidCastExceptions) generated by the .NET CLR are not detected by Exception

Hunter.

© Red Gate Software Ltd 14

Exception Hunter can generate a report of the exceptions thrown by each of the methods

in an assembly.

Three types of report are available:

 Report by method (*.html)shows which exceptions are thrown by each method

 Report by exception (*.html) shows which methods throw each exception

 XML report (*.xml) gives full details of exceptions in a format that can be read

programmatically

To generate a report:

 navigate to the assembly (page 5), then click Generate Report

Alternatively, you can generate a report from the command line (page 15).

Generating reports

© Red Gate Software Ltd 15

This topic describes how to use the basic features of the command line.

Getting help from the command line

To display help on any of the tools from the command line, enter:

Hunt /help

This displays a brief description of the tool, and basic help on all the command line

switches.

For more detailed help enter:

Hunt /help /verbose

This displays a detailed description of each switch and the values it can accept (where

applicable), and all exit codes. To output the help in HTML format, enter:

Hunt /help /verbose /html

Entering a command

When you enter a command line, the order of switches is unimportant. You are

recommended to follow the Microsoft convention of separating a switch from its values

using a colon as shown below.

/out:output.txt

(You can separate a switch that accepts a single value from its value using a space, but

this is not recommended.) Values that include spaces must be delimited by double

quotation marks ("). For example:

/out:"c:\output file.txt"

Note that if you delimit a path with double quotation marks, you must not terminate the

path with the backslash character (\), because the backslash will be interpreted as an

escape character. For example:

Incorrect: /location:"C:\Packages\"

Correct: /location:"C:\Packages"

For switches that accept multiple values, use commas to separate the values. For

example:

/searchPaths:"C:\MyProjects", "D:\WorkFolder\Code"

For switches that accept a compound value, separate each part of the value using a

colon.

Using the command line

© Red Gate Software Ltd 16

Aliases

Many of the switches have an alias. The alias provides a convenient short-hand way to

specify the switch. For example, /? is the alias for the /help switch, and /v is the alias for

the /verbose switch. Note that switches and aliases are not case-sensitive.

/verbose and /quiet switches

The standard output mode prints basic information about what the tool is doing while it is

executing. You can specify verbose and quiet modes using the /verbose and /quiet

switches, respectively: in verbose mode, detailed output is printed; in quiet mode, output

is printed only if an error occurs.

Redirecting command output

Output from all commands can be redirected to a file by one of several methods:

 Use the /out switch to specify the file to which you want output directed:

Hunt ... /out:outputlog.txt

where outputlog.txt is the name of the file. If the file exists already, you must also

use the /force switch to force the tool to overwrite the file, otherwise an error will

occur.

 Use the output redirection features that are provided by the shell in which you are

executing the command.

From the standard command prompt provided by Windows, you can redirect output to

a file as follows:

Hunt ... > outputlog.txt

Note that the redirection operator (>) and file name must be the last items on the

command line. If the specified file exists already, it will be overwritten. To append

output from the tool to an existing file, for example to append to a log without losing

the data already present in the log, enter the following:

Hunt ... >> existinglog.txt

If you are scripting using a language such as VBScript, JScript, PHP, Perl, or Python,

or if you want to access the tool from Web pages using ASP.NET, refer to the

documentation for the relevant language.

© Red Gate Software Ltd 17

This topic provides some simple examples of how to use the command line interface.

Analyzing an assembly for exceptions

To detect the exceptions for all methods in the assembly WidgetAssembly.dll :

hunt /assembly:WidgetAssembly.dll

 /all

If you do not specify the path to the assembly file, Exception Hunter assumes it is in the

same folder as the Hunt.exe file. To specify an assembly in a different folder, enclose the

full path in quotes:

hunt /assembly:"C:\MyProjects\WidgetProject\WidgetAssembly.dll"

 /all

Note: If you do not specify either /all or at least one method using the /method

argument, an error is returned.

Analyzing more than one assembly

To analyze more than one assembly, use separate /assembly arguments to specify each

assembly:

hunt /assembly:"C:\MyProjects\WidgetProject\WidgetAssembly1.dll"

 /assembly:"C:\MyProjects\WidgetProject\WidgetAssembly2.dll"

 /assembly:"C:\MyProjects\WidgetProject\WidgetAssembly3.dll"

 /all

Selecting specific methods to analyze

To specify particular methods to analyze, use the /method argument. Use a separate

argument for each method:

hunt /assembly:"C:\MyProjects\WidgetProject\WidgetAssembly1.dll"

 /method:System.Int32.ToString(String)

 /method:System.Code.WidgetFunction()

You need to specify only enough of the name to make it unique.

Examples using the command line

© Red Gate Software Ltd 18

Producing a report

By default the results of the analysis are output to the console.

Use the /xml switch to produce a results file containing the results as a set of xml data

that you can translate into whatever format you require. You can also choose one of two

HTML format reports:

 /methodReport

The results are organized by method.

 /exceptionReport

The results are organized by exception type.

Setting analysis options

Use the following switches to control how Exception Hunter analyzes your methods:

/frameworkVersion

x.x
Analyzes assemblies against a specified version of the

.NET Framework. For example,

/frameworkVersion1.1, frameworkVersion3.0.

If a framework switch is not specified, .NET framework

2.0 is assumed.

/noGAC Does not search the GAC when analyzing assemblies.

/stackDepth: n Sets the maximum depth of the stack that is used

when displaying exceptions. Note that a value of 5 or

greater may result in Exception Hunter taking a long

time to complete its operation.

/maxOverrides: n Specifies the maximum number of virtual or interface

overrides to follow. If the number of possible

implementations of an object is greater than the

number specified in this argument, Exception Hunter

will ignore all exceptions thrown by this method.

Some methods like GetHashCode() and interfaces like

IComparer can be implemented by very many objects,

so increasing the value of this option can results in

much longer processing times.

/ignoreCodeBranch

es
When this argument is specified, Exception Hunter

does not attempt to eliminate code branches based on

the possible values that have been evaluated for a

variable.

© Red Gate Software Ltd 19

/fastMode Uses a faster algorithm to analyze the code. Produces

results more quickly but detects fewer exceptions.

Typically, Exception Hunter detects fewer potential

NullReferenceException and InvalidCastException

exceptions but more exceptions that may never be

thrown due to code logic, for example

ArgumentNullException.

/ignoreChattyClas

ses
Ignores calls to the ResourceManager and other

apparently simple .NET library methods that call into

many other parts of the library; using this switch can

reduce the 'noise' of unexpected results and reduces

the time required to complete the analysis.

For a complete list of arguments and syntax for the command line, type:

hunt /? /v

© Red Gate Software Ltd 20

Trademarks and registered trademarks

Red Gate is a registered trademark of Red Gate Software Ltd registered in the U.S. Patent

and Trademark Office.

.NET Reflector and SQL Compare are registered trademarks of Red Gate Software Ltd

registered in the U.S. Patent and Trademark Office.

ANTS Performance Profiler, ANTS Memory Profiler, .NET Reflector Pro, Exception Hunter,

Schema Compare for Oracle, SQL Backup, SQL Data Compare, SQL Comparison SDK,

SQL Dependency Tracker, SQL Doc, SQL HyperBac, SQL Log Rescue, SQL Monitor, SQL

Multi Script, SQL Packager, SQL Prompt, SQL Refactor, SQL Scripts Manager, SQL

Storage Compress, SQL Toolbelt, SQL Virtual Restore, and Exchange Server Archiver are

trademarks of Red Gate Software Ltd.

Microsoft, Windows, Windows 98, Windows NT, Windows 2000, Windows 2003, Windows

XP, Windows Vista, Windows 7, Visual Studio, and other Microsoft products referenced

herein are either registered trademarks or trademarks of Microsoft Corporation.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

InstallShield is a registered trademark and service mark of InstallShield Software

Corporation.

PagerDuty is a registered trademark of PagerDuty, Inc.

WordPress is a registered trademark of the WordPress Foundation.

Copyright information

All Red Gate applications are © Red Gate Software Ltd 1999 - 2013

SQL Backup, SQL Compare, SQL Data Compare, SQL Packager, and SQL Prompt contain

software that is Copyright © 1995 - 2005 Jean-loup Gailly and Mark Adler.

SQL Doc includes software developed by Aspose (http://www.Aspose.com).

SQL Backup contains software that is Copyright © 2003 - 2008 Terence Parr. Refer to the

ACKNOWLEDGEMENTS.txt file in your SQL Backup installation directory for the full license

text.

Acknowledgements

