
1.
2.
3.

4.

Static Data

One thing to consider when source-controlling your database is how to maintain static/lookup data within your project.

This can include data that is needed by the calling application to work such as zip/postal codes, country lists or even application settings.

ReadyRoll offers two distinct ways of handling static data:

 – use the SQL Data Compare engine (built into ReadyRoll) to generate migrations containing INSERT/UPDATE/DELETE Online method
statements
This is the simplest way to edit static data. Simply flag one or more tables for data tracking, and you can edit the data directly in the target
database and then synchronize with your database project to generate a migration script.

 – use an open-source tool to generate re-usable MERGE statementsOffline method
This method has a higher learning curve than the online method but offers more flexibility. The advantage of working offline is that you can store
the data in a single file, rather than generating a new file with each change, allowing you to branch and merge the data in source control.

Editing Static Data Online

In addition to synchronizing schema and code objects, the ReadyRoll tool-window in Visual Studio can also synchronize static data..

This allows you to edit table data in an online manner, e.g. with SQL Management Studio, and then import changes back into your database project to
generate INSERT/UPDATE/DELETE statements within a new migration.

To mark a table for data tracking:

Open your Database Project in Visual Studio, and switch to the ReadyRoll tool-window (shown below).
Click to display the list of tables available for data tracking. Expand the group to locate existing tables.View Pending Changes Identical Objects
Right-click a table from the list and check .Include Table data
A notification bar should appear, indicating that a is pending.Refresh
Refresh the pending change list. This time, ReadyRoll perform a comparison that will include data from the specified table(s).

You can now preview and import data from the specified tables.

Data population strategies

If you're interested in the various techniques for seeding your database in general, you may like to start by reading this article on data
.population strategies

You can choose to use either the online or offline editing approaches above, or a combination of both, in the one database project.

For example, you may use the online method on tables that contain consistent data between all environments, and use the offline method on
tables where the data changes between environments.

Handling larger data sets

If you're looking to seed a table with a larger amount of data (10,000+ rows) then you may find that the approaches outlined in this article
unsuitable, as INSERT-ing many rows with literal values does not tend to scale very well. For larger data sets, we recommend including a seed
file in your project and using the BULK INSERT statement to upload the data. Read more about using the BULK INSERT method.

Primary Key requirement

In order to track the data within your tables, the table must include a primary key. If a primary key is not present in a given table, the data within
the table will be ignored (not imported).

https://documentation.red-gate.com/display/RR1/Tutorial%3A+Configuration+data
https://documentation.red-gate.com/display/RR1/Tutorial%3A+Configuration+data
https://documentation.red-gate.com/display/RR1/Data+Population
https://documentation.red-gate.com/display/RR1/Data+Population
https://documentation.red-gate.com/display/RR1/Seed+Data

Editing Static Data Offline

Editing offline means that you start by preparing a data change script before actually deploying the changes to the database.

In this example, we'll use the to manage the deployment of our static data. MERGE statement What makes MERGE so useful is not only its ability to
insert, update or delete data in one succinct, atomic operation but also the fact that the statements are re-runnable. This allow for the source script to be
edited and re-used for deployment to all target environments. It also gives you the ability to include SQLCMD variables in place of literal values, allowing

).you to centralize the deployment of configuration data (read more about deploying environment-specific data

To generate MERGE statements, we will use the stored procedure utility. The script that is generated from the utility can be pasted sp_generate_merge
into a script in your ReadyRoll project, as explained below.Post-Deployment

Working with larger data sets

When choosing tables to track for data changes, it is important to bear in mind that ReadyRoll is optimized for working with smaller sets of static
data (< 1MB table size). This is to ensure that your database projects always build quickly, as larger datasets can produce a significant amount
T-SQL code which can cause performance issues during project build/deployment.

A warning will display within the tool-window if data 'marked' table exceeds 1MBReadyRoll .

For larger data sets, we recommend using the method instead.data seed method with BULK INSERT

Limitations in Continuous Integration / Deployment

Please note that ReadyRoll's static data tracking is not currently supported within the , so the drift report will not report on drift correction feature
any data differences. Likewise, the which shows object-level changes that are pending deployment (e.g. in Octopus deployment preview feature
/ VSTS / TFS), does not yet support the previewing of data changes.

http://msdn.microsoft.com/en-us/library/bb510625.aspx
https://documentation.red-gate.com/display/RR1/Variables
https://documentation.red-gate.com/display/RR1/Tutorial%3A+Configuration+data
https://documentation.red-gate.com/display/RR1/Seed+Data
https://documentation.red-gate.com/display/RR1/Handling+Schema+Drift
https://documentation.red-gate.com/display/RR1/ReadyRoll+1.5+release+notes#ReadyRoll1.5releasenotes-Octopusdeploymentpreview

Installing the "sp_generate_merge" proc

Download the "master.dbo.sp_generate_merge" stored procedure and install it by simply running the script on your dev SQL Server instance. This will
install the utility as a system procedure within the [master] database so that it can be used within all of your user databases.

Generating a MERGE statement from existing data

In this step we'll generate a single MERGE statement containing all the records from the "Region" table in the Northwind database:

Firstly, open SQL Management Studio and connect to your development database server and ensure that your SQL client is configured to send results to
grid, rather than text.

Execute the stored procedure, providing the source table name as a parameter. If your table is in a non-default schema, be sure to supply the @schema
parameter with its name.

For example:

EXEC Northwind.dbo.sp_generate_merge 'Region', @schema='dbo'

Limitations of the offline method

There are a few draw-backs of the offline method to consider prior to selecting this approach:

Non-determinism of the statement: before actually running the deployment against your target environment, it can be difficult to MERGE
know what changes will be applied (if any). Worst case scenario, you could hit one of the documented issues in MERGE
The workflow isn't necessarily the most natural way to edit data, as it requires running the utility proc and copying+pasting the output
back into the original file. Editing the file directly is an alternative, but isn't the most user-friendly experience especially with large
amounts of reference data
Coordinating changes to both the schema and data within the reference table can be quite difficult, given that your schema changes
will be performed in a separate part of your deployment (i.e. run only after all pending have been multi-use scripts migrations
executed). For example, if you need to update an ID value in the lookup table prior to adding a foreign key to the schema, then that
update would need to be hand-coded and included in your project separately to your your MERGE statement.

If you foresee that these limitations may be problematic for your deployments, then it may be worth considering the online approach to source
controlling your static data instead.

Open Source Project

Note that you do not need to add this script to your ReadyRoll database project, nor do you need to deploy the stored procedure to any server
other than your Development environment.

Full details of the "sp_generate_merge" stored procedure .can be found on GitHub

https://documentation.red-gate.com/download/attachments/40731673/generate-sql-merge-master.zip?version=1&modificationDate=1455632021930&api=v2
https://www.mssqltips.com/sqlservertip/3074/use-caution-with-sql-servers-merge-statement/
https://documentation.red-gate.com/display/RR1/Additional+Scripts
https://documentation.red-gate.com/display/RR1/Migrations
https://github.com/readyroll/generate-sql-merge

Click the hyperlink in the result set to open up the Xml fragment in a new document window.

Copy the document contents (excluding the Xml tags) to the clipboard and switch back to Visual Studio.

In the next step we'll create a script to be executed during each deployment which will ensure that the table is always in-sync.

Add a deployment script to your project

Within Visual Studio, open the Solution Explorer tool-window () and expand your ReadyRoll database project's View... Solution Explorer Post-Deployment
sub-folder.

Right-click the sub-folder and select . In the New Script dialog, select the template and specify a name Post-Deployment Add... Script Script (Not In Build)
that includes the next sequential number, eg. 01_Populate_Region_Data.sql.

Paste the SQL copied in the previous step into the newly created script file.

With the benefit of syntax highlighting, we can now take a bit more of a closer look at what is going on in the generated script:

Script naming

Naming your Pre/Post-Deployment scripts in this way isn't mandatory for your project to build, however we recommend sequentially numbering
your scripts to make it easier to explicitly define the order of execution. This is particularly important if there are interdependencies between your
static data tables.

To test your new script, deploy your database project to your development SQL Server (). The Output window should display Build... Deploy Solution
results similar to below:

Using MERGE to deploy configuration data

Using the offline method outlined above gives you the ability to include SQLCMD variables in place of literal values, allowing data from the deployment
system to be passed in and stored within your tables (e.g. environment-specific variables from Octopus).

This means you could use your deployment system to centralize the storage of configuration settings, giving you a systematic and repeatable process for
propagating updates to configuration data.

Read more about deploying config data in this tutorial.

Making Changes to Static Data

To see how the script can be re-used to repeatedly deploy changes in your static data, try making changes to the data in the script and re-run
the deployment. The rows affected by the MERGE should reflect your additions and modifications to the file.

If you prefer to initiate changes to data by editing the table data directly in SSMS, you can do so by simply re-running the sp_generate_merge
procedure after making changes to the live data. Copy+Paste the generated code as you did in the previous steps to update your Post-
Deployment script with the new changes.

https://documentation.red-gate.com/display/RR1/Variables
https://documentation.red-gate.com/display/RR1/Tutorial%3A+Configuration+data

	Static Data

