
Transaction Handling
When deploying your database with ReadyRoll, you may wonder:

How are transactions handled?
If the deployment fails, will all the previous migrations be rolled-back?
Can I implement my own transaction handling?

The answer to these questions depends on the type of change you are performing. Here is a break-down of transaction handling behaviour in ReadyRoll:

Sequence Script Directory Transaction Used Example script filename

1 Pre-Deployment No 01_Create_Database.sql

2 Migrations Yes 0010_Invoices_AddColumn_Date.sql

3 Programmable Objects
& Additional Scripts

Yes Views\dbo.vwInvoicesByYear.sql

4 Post-Deployment No 01_Finalize_Deployment.sql

Anatomy of Transaction Handling in ReadyRoll

This section details some of the conventions used in ReadyRoll deployments by examining the project artifacts; specifically the T-SQL file that is generated
when you perform a in Visual Studio, eg. . This file contains a concatenated list of all the Build AdventureWorks\bin\Debug\AdventureWorks.sql
scripts from your ReadyRoll database project.

Output script header

The first thing you will see when you open the deployment script is the SqlCmd header:

==
====
---- SQLCMD Variables

:setvar DatabaseName "AdventureWorks"
:setvar Configuration "Debug"
:setvar OctopusEnvironmentName "DEV"
:setvar ReportFolder "\\bigsan01\reports\"

==
====

:on error exit -- Instructs SQLCMD to abort execution as soon as an erroneous batch is encountered

GO

SqlCmd is a SQL Server utility with a unique scripting syntax that provides us with two key advantages over deploying with plain old T-SQL:

The directive ensures that, if any statement within the script raises an unhandled exception, execution is immediately halted at :on error exit
the current batch (rather than simply continuing to the next batch after GO)
Support for variables which can be passed via the SQLCMD.EXE command line tool. Those variables can be used throughout your scripts using
the syntax. This is a feature that we’ve exploited extensively within .$(VariableName) ReadyRoll’s Octopus Deploy integration

XACT_ABORT to control execution flow

The next thing you’ll notice is the use of the predicate. According to :SET XACT_ABORT ON MSDN

Where , ReadyRoll will automatically wrap your migrations in a single BEGIN TRAN / COMMIT TRAN "block".Transaction Used = Yes

If at any point one of these migration fails to deploy, the entire transaction will be rolled-back.

If you wish to use a transaction within your Pre/Post-Deployment scripts, you can perform a BEGIN TRAN yourself, however please ensure that
you perform a COMMIT or ROLLBACK at the end of your script to avoid having overlapping transactions.

In the case of migration scripts, programmable objects and additional scripts, ReadyRoll will confirm that after each script TRANCOUNT() = 0
execution.

https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility
https://documentation.red-gate.com/display/RR1/Octopus+Deploy
http://msdn.microsoft.com/en-us/library/ms188792.aspx

When SET XACT_ABORT is ON, if a Transact-SQL statement raises a run-time error, the entire transaction is terminated and rolled
back. When SET XACT_ABORT is OFF, in some cases only the Transact-SQL statement that raised the error is rolled back and the
transaction continues processing.

To avoid the need to add excessive amounts of error-handling logic to your scripts, and prevent we explicitly set this predicate ON as part of the build
you from setting it to OFF within migrations and programmable objects/additional scripts (unless the transaction-handling mode is used; see below Custom

).Disabling Automatic Transaction Handling

Putting it together

The combination of SqlCmd and XACT_ABORT ensures that, if an exception occurs at any point during deployment, the execution is halted and the
connection dropped at the current statement.

Additionally, scripts that have been executed thus far will be rolled-back:

Transaction handling sample deployment script

:setvar DatabaseName "AdventureWorks"

:on error exit -- Instructs SQLCMD to abort execution as soon as an erroneous batch is encountered

SET XACT_ABORT ON;
BEGIN TRANSACTION;

------------------ BEGIN MIGRATION: "0016_20131129-1641_User.sql" --------------------
CREATE TABLE t1
 (a INT NOT NULL PRIMARY KEY);

INSERT INTO t1 VALUES (1);
INSERT INTO t1 VALUES (2);
GO
------------------- END MIGRATION: "0016_20131129-1641_User.sql" ---------------------
INSERT [$(DatabaseName)].[dbo].[__MigrationLog] ([migration_id], [script_checksum], [script_filename],
[complete_dt], [applied_by], [deployed])
VALUES (CAST ('d9a91eef-2db8-4911-868b-b29d3d86bae0' AS UNIQUEIDENTIFIER),
'82E9FEA4D0637C8F09DC4D67F4EEC0ED2F706AED8ADFDFA845FFE06188EDE75A', '0016_20131129-1641_User.sql',
SYSDATETIME(), SYSTEM_USER, 1);
GO

------------------------ BEGIN PROGRAMMABLE OBJECT: "dbo.v1.sql" ----------------------------
IF OBJECT_ID('[dbo].[v1]') IS NULL
 EXEC('CREATE VIEW [dbo].[v1] AS SELECT 1 AS Dummy'); -- PLACEHOLDER ONLY - Specify object parameters/body
within the ALTER statement
GO

ALTER VIEW [dbo].[v1]
 AS SELECT a, b FROM [t1] -- Will fail because `[b]` is an invalid column
GO
------------------------- END PROGRAMMABLE OBJECT: "dbo.v1.sql" -----------------------------
INSERT [$(DatabaseName)].[dbo].[__MigrationLog] ([migration_id], [script_checksum], [script_filename],
[complete_dt], [applied_by], [deployed])
VALUES (CAST ('0fa6126b-1e3b-438e-8915-72954309cce6' AS UNIQUEIDENTIFIER),
'B352156857D4BCA92A1DD2931642CECC43FBEB86C5BE305339A28F79EE9002FD', 'dbo.v1.sql', SYSDATETIME(), SYSTEM_USER,
1); -- This line will not be reached due to the error in "dbo.v1.sql"
GO

COMMIT TRANSACTION; -- This line will not be reached due to the error in "dbo.v1.sql"

Pre & Post-Deployment script XACT_ABORT behavior

In spite of there being no automatic transaction handling for the files contained within the and folders, Pre-Deployment Post-Deployment
ReadyRoll also sets XACT_ABORT to the ON setting within these scripts for consistency of deployment behavior. However, as some features
of the T-SQL language (such as the require this setting to be OFF, it may be necessary to include a sp_fulltext_load_thesaurus_file statement)
SET XACT_ABORT OFF statement in the header of your Pre/Post Deployment scripts. Note that, for these types of scripts, it is not necessary
to include the header metadata described further below.Custom

One thing conspicuously missing here is a statement at any point. This is because a rollback is implicit in the use of the XACT_ABORT ROLLBACK
predicate: when an unhandled error occurs, SQL Server immediately performs a rollback and raises an error to the client (in our case,).SQLCMD.EXE

Controlling execution flow with TRY/CATCH blocks

For the most part, we hope that the structure we’ve added around your migrations means you’ll never need to worry about how transactions are handled.
However there are some use cases for which you might want to exercise greater control over the flow of execution.

For example, say you want to write some details of an error to a log table. Typically, your log records would simply be rolled-back along with your other
changes when an error occurs.

But with a TRY/CATCH block, you have the ability to capture exceptions that are raised within your batch and issue a yourself. For example:ROLLBACK

Try/Catch sample deployment script

:setvar DatabaseName "AdventureWorks"

:on error exit

SET XACT_ABORT ON;
BEGIN TRANSACTION;

------------------ BEGIN MIGRATION: "0016_20131129-1641_User.sql" --------------------
CREATE TABLE t1 (a INT NOT NULL PRIMARY KEY);

BEGIN TRY
 INSERT INTO t1 VALUES (1);
 INSERT INTO t1 VALUES (1); -- Will fail because ID=1 already exists in the table
END TRY
BEGIN CATCH
 IF @@TRANCOUNT > 0
 ROLLBACK TRANSACTION; -- We must roll-back because our transaction is doomed at this point

 BEGIN TRANSACTION
 IF OBJECT_ID('error_log') IS NULL
 CREATE TABLE error_log (id INT IDENTITY(1, 1) PRIMARY KEY, msg NVARCHAR(MAX));

 INSERT INTO error_log (msg) VALUES (ERROR_MESSAGE());
 COMMIT TRANSACTION
 RAISERROR(N'An error occurred. Halting deployment.', 16, 127, N'UNKNOWN') WITH NOWAIT;
END CATCH
------------------- END MIGRATION: "0016_20131129-1641_User.sql" ---------------------
GO
INSERT [$(DatabaseName)].[dbo].[__MigrationLog] ([migration_id], [script_checksum], [script_filename],
[complete_dt], [applied_by], [deployed])
VALUES (CAST ('d9a91eef-2db8-4911-868b-b29d3d86bae0' AS UNIQUEIDENTIFIER),
'06D29866BEE2749E96C842DDE120CBBA96624D4B2882AFFD97AA8298994AD9A9', '0016_20131129-1641_User.sql',
SYSDATETIME(), SYSTEM_USER, 1); -- This line will not be reached due to the error in the above migration
GO

COMMIT TRANSACTION; -- This line will not be reached due to the error in the above migration

This code will raise an exception at line 13, causing the prior operations in the batch to be rolled-back. However the new row in the will persist error_log
even after the script is halted (via the), because it occurs in a separate transaction to the statements within the block.RAISERROR TRY

How are syntax errors handled?

ReadyRoll runs all of your migrations through the T-SQL compiler during project build, so provided your statements are not being executed as dynamic
SQL (eg. using /), you should not receive syntax errors at deployment time.EXEC sp_execute

However testing your database project is still the most foolproof way of validating your T-SQL migrations.by doing a full deploy to a test server

Disabling Automatic Transaction Handling

Note that not all exceptions can be contained by TRY/CATCH blocks: if for some reason , the error will not be your batch fails to compile
caught and the exception will instead be thrown to the client. For example, a primary key violation error (like you might get with an stateINSERT
ment) be caught by the block, however a reference to a non-existent object will not.will CATCH

https://documentation.red-gate.com/display/RR1/Continuous+integration
http://msdn.microsoft.com/en-us/library/ms179296.aspx

If your use case dictates that the migration be executed of a user transaction, or in a transaction that is isolated from any others in the deployment, outside
you can control this behavior at the script level by switching to transaction handling:Custom

-- <Migration ID="(migration id)" TransactionHandling="Custom" />

To disable transaction handling within a or file, the Migration metadata is also used, but with the ID attribute omitted programmable object additional script
from the element:

 -- <Migration TransactionHandling="Custom" />

You might want to use mode if:Custom

You have a long-running operation like a and you want to commit batches of rows at a timeBULK INSERT
You want to automate the deployment of a server-level object such as a linked server
You need to perform an operation on the current databaseALTER DATABASE
You need to add full-text indexes to your database, or perform some other operation which cannot be done within a user transaction

Prior to executing your Custom-flagged migration, ReadyRoll will any open transactions. After executing that migration, a new transaction will be COMMIT
opened for any remaining migrations that are pending deployment.

https://documentation.red-gate.com/display/RR1/Programmable+Objects
https://documentation.red-gate.com/display/RR1/Additional+Scripts

	Transaction Handling

