
Octopus Deploy
When it comes to deploying SQL Server databases, and ReadyRoll make a great team.Octopus Deploy

Use ReadyRoll to carefully prepare your migrations – column additions, , , or and then propagate stored procedure changes SQLCLR assemblies static data
those changes through your environments using Octopus with total consistency and minimal fuss.

ReadyRoll makes deploying with Octopus easy through it’s out-of-the-box support for OctoPack; a tool that produces standardized packages that can be
consumed by Octopus Deploy.

During deployment of ReadyRoll database packages, Octopus can take care of:

Creating the database if it doesn’t exist
Deploying of any pending migrations with automatic transaction handling
Rolling-back to earlier versions of procs/views/functions (if an old package is redeployed)
Running of any pre/post-deployment actions (eg. db backup or bulk data insertions)

In your SQL migration scripts, you can make use of any of system or user-defined variables from Octopus, allowing for to be environment-specific settings
consumed during deployment.

Packaging your database project

After using Visual Studio to create your ReadyRoll database project and import your database (if pre-existing), open the project properties.

On the tab, you’ll notice an option to enable Octopus packaging for your project:Project Settings

Octopus Deploy Step Template

To get up and running with Octopus Deploy even more quickly we've created a ReadyRoll step template you can drop into your process.
Instead of having to use variables, you can use our step template user interface to enter your database connection details. The template is
available from the .Octopus Deploy Library

See for more detail on getting set up.Tutorial: Octopus Deploy Step Template

http://octopusdeploy.com/
https://documentation.red-gate.com/display/RR1/Programmable+Objects
https://documentation.red-gate.com/pages/viewpage.action?pageId=40731669
https://documentation.red-gate.com/display/RR1/Static+Data
https://documentation.red-gate.com/display/RR1/Transaction+Handling
https://documentation.red-gate.com/display/RR1/Variables
http://library.octopusdeploy.com/step-template/actiontemplate-readyroll-deploy-database-package
https://documentation.red-gate.com/display/RR1/Tutorial%3A+Octopus+Deploy+Step+Template

Choose option if you intend to install a Tentacle on each of your target SQL Server hosts (more about local Deploy to the default instance on the Tentacle
vs remote deployments later in this article).

In effect this option sets the variable to , however if your SQL Server instance has a specific name, you can optionally add a DatabaseServer (local)
value for the DatabaseServer variable on the tab: Octopus Deploy

Switch back to the tab and click This will add a package metadata file to the project:Project Settings Add/Edit NuSpec File.

(Optional step) If you intend to use the , you will need to add assembly information to your project. To do so, switch to Assembly Info patcher in TeamCity
the the tab, and click to generate an file:SQLCLR Assembly Information AssemblyInfo.cs

http://confluence.jetbrains.com/display/TCD8/AssemblyInfo+Patcher

Now switch to the configuration and the solution to test packaging of your database project:Release Build

Opening up the generated package using will reveal a handful of deployment assets: NuGet Package Explorer

If you intend to supply the property as part of your Continuous Integration build (e.g. using the OctoPack Package Number Octopus plugin for
), then adding the assembly information file is not necessary; OctoPack will simply ignore the assembly version if this property is TeamCity

specified.

http://npe.codeplex.com/
http://docs.octopusdeploy.com/display/OD/TeamCity
http://docs.octopusdeploy.com/display/OD/TeamCity

Automating your solution build

You can choose any Continuous Integration server to automate the build of your ReadyRoll database project, but the makes Octopus plug-in for TeamCity
integrating the packaging and deployment of your application and database components incredibly easy.

Add the following build step to a new or existing build configuration/plan:

Runner type: MSBuild
 (solution or project file path)Build file path:

 x86 (32-bit)MSBuild platform:
 .NET Framework 4.0 (or later)MSBuild version:

 4.0 (or later)MSBuild tools version:
System Properties:
 RunOctoPack = True (only needed if not using the TeamCity Octopus plugin)
 OctoPackPackageVersion = e.g. %build.number% (only needed if not using the TeamCity Octopus plugin)
 OctoPackTargetsPath = path to the file, specify it only if you want to use a different version of the OctoPack than the one bundled into OctoPack.targets
the ReadyRoll (optional)
 TargetServer = [Prod SQL Server Instance] (optional, see below)
 ShadowServer = [Test SQL Server Instance] (optional), see below

Performance tip: Once you have configured your database project for Octopus packaging, feel free to un-check the Octopus Deploy-
 output option in project settings. This will result in much faster Visual Studio builds (don't worry, the package will still compatible NuGet package

be generated during Continuous Integration).

Optional system properties

Specify the and properties if you would like to include a :TargetServer ShadowServer preview of your deployment within Octopus

:TargetServer Target instance of SQL Server to generate the preview against. Typically this will be the SQL Server instance in your
Production environment. Read (db_datareader membership) and VIEW DEFINITION permission is required within the target database
(s).

:ShadowServer An instance of SQL Server where ReadyRoll may create a temporary copy of your database based on the project
sources and produce a schema snapshot file to use as the basis of report generation. Typically this will be an instance of SQL Server
in a Development environment.

If the ShadowServer property is not specified, the following message will be output during deployment within Octopus: Skipping snapshot
(note: prior to ReadyRoll 1.16.18088, this message was logged as a warning). Until the deployment as a snapshot file could not be found

property is added, report generation will not be available however the deployment of your scripts themselves will be unaffected. More
information

http://docs.octopusdeploy.com/display/OD/TeamCity
https://documentation.red-gate.com/display/RR1/ReadyRoll+1.5+release+notes#ReadyRoll1.5releasenotes-Octopusdeploymentpreview
https://documentation.red-gate.com/display/RR1/Continuous+integration#Continuousintegration-Targetdatabase
https://documentation.red-gate.com/display/RR1/Continuous+integration#Continuousintegration-Shadowdatabase
https://documentation.red-gate.com/display/RR1/Continuous+integration#Continuousintegration-Shadowdatabase
https://documentation.red-gate.com/display/RR1/Continuous+integration#Continuousintegration-Shadowdatabase

As part of your build configuration, you will need to ensure that the NuPkg artifacts (produced during build) are made available to Octopus via a NuGet
feed. about how to integrate TeamCity with Octopus.Read more

Packaging with TFS Build

Please see the Octopus documentation if you would like to .build and package your solution with Team Foundation Server

Setting up package deployment

The packaging steps above should have resulted in your database being packaged and served up to your chosen NuGet feed.

Within Octopus Deploy, add a new step to your deployment process, specifying the NuGet package ID from your NuSpec file:

In this example, we're assuming that you've installed a Tentacle (deployment agent) onto each of your target SQL Server machines, enabling a local
database deployment. More about local vs remote database deployments later.

Specifying the Database Server/Name (optional)

By default, ReadyRoll will deploy to the default SQL Server instance on the Tentacle, using the database name specified in your .sqlproj file. However this
can be overridden by :adding the following variables to your Octopus project

DatabaseServer: The target SQL Server server/instance
DatabaseName: The name of the target database

Scope the variables appropriately to provide a different server name or database name for each target environment. You may want to do this if, for
example, you want to deploy from a central Tentacle (), or if you need to deploy multiple copies of a database to the same SQL instance.more on this below

Build-time dependencies

Before you can build ReadyRoll projects, you'll need to do one of the following:

install ReadyRoll on your build agent (server), or
install or include the NuGet package in your solutionReadyRoll.MSBuild

For more information, see .Installing on your build agents

Be sure to remove any deployment from the newly-added step; ReadyRoll does not require any features in order to work, and these Features
may cause errors during deployment.

By default, Windows Authentication is used to connect to your database server. This means that the account that the OctopusDeploy Tentacle
service is configured to run-as needs to have access to your target SQL Server instances.

If you would prefer to use SQL Server Authentication instead, add the following variables within your Octopus project:

 FalseUseWindowsAuth:
DatabaseUserName: (username)
DatabasePassword: (password)

http://docs.octopusdeploy.com/display/OD/TeamCity
http://docs.octopusdeploy.com/display/OD/Team+Foundation+Server
https://documentation.red-gate.com/display/RR1/Build+components

Creating a release

From the page, click and select the appropriate package version.Project Overview Create Release

If you enabled in your build configuration, the release contents should give you a list of pending changes:deployment previews

Click and select an environment to deploy to. If the database doesn't exist on the target SQL Server instance, it will be created and Deploy this Release
then all migrations will be executed.

If you switch to the , you’ll see the output from your database deployment:Task Log

https://documentation.red-gate.com/display/RR1/ReadyRoll+1.5+release+notes#ReadyRoll1.5releasenotes-Octopusdeploymentpreview

When you're ready to deploy onto other environments, including Production, click Promote to... [Environment]. The exact same set of migrations will
execute against your upstream environment, giving you a predictable deployment outcome every time.

Using Octopus variables in your database deployment

During deployment, ReadyRoll will automatically map your Octopus variables to . This makes it easy to consume values from your SQLCMD variables
Octopus project's variables, such as environment-specific settings, or to make use of the system variables .provided by Octopus itself

For example, say you want to use the Octopus release number in a migration script. To do so, firstly add the variable to the $(OctopusReleaseNumber)
ReadyRoll project and give it a Default value, eg. 1.0.0.0.

Then add a new migration script to the project and specify the variable name in :SQLCMD format

-- <Migration ID="05a44c70-fd8b-4f1f-9d50-5441daa0db58" />
GO
PRINT 'We''re deploying release $(OctopusReleaseNumber)';
GO

During subsequent deployments, the package will only deploy any new migrations that have been added to the project (if any). Redeploying the
same package, or deploying the package with no new migrations added, has no effect.

https://documentation.red-gate.com/display/RR1/Variables
http://docs.octopusdeploy.com/display/OD/System+variables
http://technet.microsoft.com/en-us/library/ms188714.aspx

1.

2.
3.
4.

5.

When you deploy on your own machine, it will use the value provided in the tab. However when you deploy via Octopus, the Default SQLCMD variables
value will be substituted with the current release number:

Mapping isn't limited to just the built-in Octopus variables: to use any of your own project variables (or any variable libraries that have been shared with
your Octopus project), simply add the variable names to the tab within the database project in Visual Studio.SQLCMD variables

The scope that you specify in Octopus for each of your variables (e.g. whether the value applies to Development & Staging, or just Production) will be
applied in the same way as a website or Windows service deployment.

Local vs Remote Tentacle deployments

In this tutorial, we have configured the project to deploy to a local instance of SQL Server. This requires that a Tentacle is installed on each of your SQL
Server host servers. For example, if you have 2 SQL Server machines in each your environments (Dev,Test & Prod), you would need to install the agent
on 6 servers.

To reduce maintenance of your deployment server infrastructure, you may prefer to deploy from a single "central" Tentacle instead, assuming your network
layout permits it. Follows these steps to perform a remote deployment from a single deployment agent:

In your project variables, add a variable called and scope it appropriately for each of your target environments and/or deployment DatabaseServer
step(s) (see , above)Specifying the Database Server/Name
Install the and on the Tentacle server.SQL Native Client 2012 (x86/x64) SQL Command Line Utilities 2012 (x86/x64)
Install the on a server that can communicate with the target SQL Server instances.OctopusDeploy Tentacle
Add the machine on the Octopus page, and under specify all environments. Assign a new role name to the machine, Environments Deployment,
e.g. . remote-sql-deployment
On the project page, update the package step with the new role name.Process

Rollback support

Once a migration is executed against a given database instance, and the transaction has been committed, the operations performed within that migration
cannot be undone (save for the restoration of a backup taken prior to its deployment). Read more about handling rollbacks

System variable tip: Remove the "." character from the name of the variable to use Octopus system variables in your migrations. In the above
example, became $(OctopusReleaseNumber).Octopus.Release.Number

https://documentation.red-gate.com/display/RR1/Variables
http://go.microsoft.com/fwlink/?LinkID=239647&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=239648&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=239649&clcid=0x409
http://go.microsoft.com/fwlink/?LinkID=239650&clcid=0x409
https://documentation.red-gate.com/display/RR1/Rollbacks

Programmable object rollbacks

Note that, if you enable the within your project, then any stored procedures, functions and views that changed programmable objects feature
within the folder will be automatically rolled-back if you subsequently deploy an older package to the target /Programmable-Objects
environment. To perform a partial rollback of programmable objects, simply revert the appropriate programmable objects in source control and
then build and deploy a new package to the target environment.

https://documentation.red-gate.com/display/RR1/Programmable+Objects

	Octopus Deploy

