
Walkthrough: Set up Continuous Integration And Release
Management
In this tutorial, you'll set up database lifecycle management using Redgate tools, including the DLM Automation TeamCity plugin:

Version control

Continuous integration

Release management

In this stage, you'll use SQL Source Control,
Subversion (SVN) and TeamCity to:

create the development database
link the database to version control
create a TeamCity project
link the database to TeamCity

When you've finished, TeamCity will monitor every
change you check into version control.
In this stage, you'll use TeamCity and the DLM
Automation TeamCity plugin build runners to:

build a database package
test the package
sync the package to a CI environment
publish the package to a NuGet feed

, TeamCity will automatically When you've finished
trigger a continuous integration process every time
a change is checked into version control.
In this stage, you'll use Octopus Deploy and DLM
Automation step templates to:

create an Octopus Deploy project
add a download and extract the package
step

http://documentation.red-gate.com/display/DLMA1/Use+the+Octopus+Deploy+step+templates+to+deploy+a+database+package#UsetheOctopusDeploysteptemplatestodeployadatabasepackage-2.CreateanOctopusDeployproject
https://documentation.red-gate.com/display/DLMA2/Use+the+Octopus+Deploy+step+templates#UsetheOctopusDeploysteptemplates-downloadpackage
https://documentation.red-gate.com/display/DLMA2/Use+the+Octopus+Deploy+step+templates#UsetheOctopusDeploysteptemplates-downloadpackage

1.
2.
3.
4.

1.
2.

1.

add , and stepscreate review deploy
create a release

, yWhen you've finished ou'll have set up an
automated release process to deploy your

.database to production

Before you start

On your development server:

Install SQL Server Management Studio (SSMS) version 2008 R2 or later.
If you want to run tSQLt tests against the database, you'll also need access to a SQL Server 2012 (or later) instance with common language
runtime (CLR) integration enabled. For more information, see (MSDN article).Enabling CLR integration
Install .TortoiseSVN
Install .Redgate SQL Source Control
Download the file and extract the contents.WidgetDevelopmentDatabaseCIDemo.zip

On your build server:

Install version 7 or later. We've tested this example against version 9.1.1. This automatically installs a default build agent.JetBrains TeamCity
From the , download the TeamCity plugin and copy to the TeamCity data directory plugin folderRedgate DLM Automation add-ons page . See Set

.up the TeamCity plugin

On your deployment server:

Install DLM Automation. See Installing.
Install and create a new environment called . See .Octopus Deploy Production Install Octopus Deploy and create a new environment
Install an Octopus Tentacle and assign the db-server role. See Install an Octopus Tentacle.

 Version control
In this section you'll:

create the development database and use SQL Source Control to link it to version control
create a TeamCity project and link the development database to it

Create the development database

Create the WidgetDevelopment database using the SQL script you extracted from the WidgetDevelopmentDatabaseCIDemo.zip file:

Open SQL Server Management Studio (SSMS).
From the menu, select .File Open > File
Browse to the file and click .WidgetDevelopment.sql Open
Click to create the database. Execute WidgetDevelopment

Link the database to version control

Use SQL Source Control to link the database to a shared Subversion (SVN) repository. You'll use the dedicated developer model, WidgetDevelopment
where each developer in your team will work on their own local copy of the database.

Use TortoiseSVN to create a Subversion repository. This must be a network folder that others in your team can access.

Using Windows Explorer, create an empty folder for the repository, for example, Z:/WidgetShop
Right-click the folder, and select . TortoiseSVN > Create repository here

Link the database to Subversion using SQL Source Control:WidgetDevelopment

In SSMS Object Explorer, select the database you want to link to source control.WidgetDevelopment

We've described how to install tools on three different servers - development, build and deployment - which is a common configuration in the
real world. If you can't do this, it's fine to install everything on one machine.

Don't worry about the warnings on missing objects. We'll create these once we configure the test step.

https://documentation.red-gate.com/display/DLMA2/Use+the+Octopus+Deploy+step+templates#UsetheOctopusDeploysteptemplates-createrelease
https://documentation.red-gate.com/display/DLMA2/Use+the+Octopus+Deploy+step+templates#UsetheOctopusDeploysteptemplates-reviewdatabaseresources
https://documentation.red-gate.com/display/DLMA2/Use+the+Octopus+Deploy+step+templates#UsetheOctopusDeploysteptemplates-deployfromrelease
http://documentation.red-gate.com/display/SR1/Deploying+a+database+package+using+Octopus+Deploy+step+templates#DeployingadatabasepackageusingOctopusDeploysteptemplates-7.Createarelease
http://msdn.microsoft.com/en-us/library/ms131048(v=sql.110).aspx
http://tortoisesvn.net/
http://www.red-gate.com/products/sql-development/sql-source-control/
http://assets.red-gate.com/delivery/ci/WidgetDevelopmentDatabaseCIDemo.zip
http://www.jetbrains.com/teamcity/
http://www.red-gate.com/dlmas/add-ons-page
https://documentation.red-gate.com/display/DLMA2/Set+up+the+TeamCity+plugin
https://documentation.red-gate.com/display/DLMA2/Set+up+the+TeamCity+plugin
https://documentation.red-gate.com/display/DLMA2/Install
http://docs.octopusdeploy.com/display/OD/Installing+Octopus
https://documentation.red-gate.com/display/DLMA2/Deploy+from+a+development+database+using+Octopus+Deploy#DeployfromadevelopmentdatabaseusingOctopusDeploy-DeployfromadevelopmentdatabaseusingOctopusDeploy-1.InstallOctopusDeployandcreateanewenvironment
https://documentation.red-gate.com/display/DLMA2/Deploy+from+a+development+database+using+Octopus+Deploy#DeployfromadevelopmentdatabaseusingOctopusDeploy-DeployfromadevelopmentdatabaseusingOctopusDeploy-Install2.InstallanOctopusTentacle
http://assets.red-gate.com/delivery/ci/WidgetDevelopmentDatabaseCIDemo.zip

2.

3.
4.

5.
6.

7.
8.

In SQL Source Control, on the Setup tab, make sure Link to my source control system is selected and click Next:

Select and click :Subversion (SVN) Next

The dialog box opens:Link to Source Control

On the left under Source control system, select Subversion (SVN).
In the Database repository URL field, specify the folder you created in your SVN repositoryfile:///Z:/WidgetShop/ .
This is where SQL Source Control will save your SQL scripts.
Under Development model, select . Dedicated database
Click . Link
The database is linked to source control. The database icon in the Object Explorer changes to show that the database is linked:

Once the link to source control has been confirmed, click .OK
To add the database objects to source control, click the tab. Commit

9.

10.
11.

12.

1.
2.
3.
4.
5.

1.

2.

3.

We want to check in every object. Select the check box at the top of the list:

Add a comment that describes the changes, for example, . new database files added
Click . Commit
A progress dialog box is displayed while SQL Source Control commits the changes to your source control system.
Click OK to close the dialog box.

Source control is updated with your changes.

The SVN repository you've created is the shared directory that the team will use to check in code changes. Map it to the local folder that'll contain your
working copy of the database. To do this:

Right-click on your Desktop and select . TortoiseSVN > Repo-browser
Paste the URL for the SVN repository, Click . file:///Z:/WidgetShop/. OK
At the dialog, in the left panel, right-click on the folder and select .Repository Browser - TortoiseSVN WidgetShop Checkout
In the field, enter your local working folder, for example .Checkout directory C:\WidgetShop
Click . A local copy of the WidgetShop folder is created.OK

Create a TeamCity project

In TeamCity Administration, under , click :Projects Create project

On the Create New Project page, add as the name for the project. WidgetShop
The Project ID is created automatically:

Click .Create

4.

5.

6.

1.
2.

Under , click :Build Configurations Create build configuration

On the page, add as the build name: Create Build Configuration WidgetDevelopment

Click . Create

Link the database to TeamCity

Configure the TeamCity VCS settings so it knows which network folder to monitor for changes:

On the page, from the drop-down list, select . VCS Roots Type of VCS Subversion
Under , in the field, enter as the unique name for this root. VCS Root Name and ID VCS root name SVN WidgetShop
Under , in the field, enter SVN Connection Settings URL file:///Z:/WidgetShop/.
This was the Database repository URL you entered when you linked the database to source control.

2.

3.
4.

1.
2.

Click . TeamCity checks that it can connect to the source control location.Test connection
Once the 'connection successful' message is displayed, close it and click . Create

The VCS settings are complete.

 Continuous integration
These sections explain how to add automated steps to:

build a package every time a change is checked into source control
run tSQLt tests against the package
sync the package to a CI environment
publish the package to a NuGet feed

Build a package

In this section you'll use the DLM Automation TeamCity plugin to:

add a build step to validate the SQL creation script and create a NuGet package
add a VCS trigger to force a build every time a change is checked into version control
trigger a build to test this step

Add a build step

You'll add the build step using one of Redgate's build runners for TeamCity.

When the build step validates the creation script, DLM Automation creates a temporary version of the database using LocalDB. This database is dropped
once the build is complete.

From the menu, select .Build Configuration Settings Build Steps
Click :Add build step

If authentication is required for your source control server, you must specify a username and password.

A build runner allows a specific third party build tool, such as DLM Automation, to integrate with TeamCity. This example uses the Build runner
that's part of Redgate's DLM Automation TeamCity plugin. It defines how to run the build and handle the output.

For more information on build runners, see (JetBrains documentation).Configuring Build Steps

http://confluence.jetbrains.com/display/TCD10/Configuring+Build+Steps

3.

4.

5.

6.

7.

a.
b.
c.

8.

9.

1.

From the drop-down, select :Runner type Red Gate DLM Automation Build

Under , leave the option selected. Source-controlled database Database folder is my build VCS root
We've already configured the VCS root as our database location.
Under , at the field, enter . Output package Package ID WidgetShopLatest
This is the name of the NuGet package you'll create. The name must be unique and can't contain spaces.

Under , select . Temporary database server SQL LocalDB
DLM Automation uses LocalDB to recreate and validate a temporary version of your database. This database is dropped once the build is
complete.
If you're using , DLM Automation can send schema information to it every time the build Redgate's DLM Dashboard (version 1.4.4.313 or later)
step runs. Under :DLM Dashboard integration

Enable the check box.Send schema information to DLM Dashboard
Enter the name or IP address of the machine hosting the DLM Dashboard.
Enter the DLM Dashboard port number. The default port is 19528.

 Once you deploy changes (for example, by running the sync step), DLM Dashboard:

recognizes the deployed schema from the information DLM Automation sent during the build step
adds the schema to its list of recognized schemas, with the name <packageId-packageVersion>, for example, WidgetShop1.0

labels the schema with the DLM Automation icon

labels the schema as an update , not drift

For more information about how DLM Automation works with DLM Dashboard, see DLM Automation integration (DLM Dashboard documentation).
For help understanding SQL Doc documentation, see What's in the documentation?
DLM Automation can include database documentation in the NuGet package that it builds. To select this option, under SQL Doc Database

, click .documentation Include database documentation

The documentation is stored in in the NuGet package. If you're using version 1.6.3 or later and have set db > docs > main.html DLM Dashboard
up DLM Dashboard integration, you can also view the documentation directly from DLM Dashboard. See (DLM DLM Automation integration
Dashboard documentation).
Click .Save

Add a VCS trigger

Add a trigger that'll force a build every time a change is checked into version control:

From the menu, select :Build Configuration Settings Triggers

When you're thinking of a package name to use in your own environment, remember that it's going to be deployed to other databases.
A generic name that describes what you're deploying is better than one that's specific to the build step or the database itself. For
example, if your database is called , this wouldn't make sense as a package name deployed to your production database.Development

Including database documentation will increase the size of the NuGet package and the time it takes to build, particularly for large
databases.

http://www.red-gate.com/products/dlm/dlm-dashboard/
http://documentation.red-gate.com/display/DDB1/Investigating+schema+changes#Investigatingschemachanges-CI_Integration
https://documentation.red-gate.com/pages/viewpage.action?pageId=20185497
https://documentation.red-gate.com/pages/viewpage.action?pageId=20185497
https://documentation.red-gate.com/pages/viewpage.action?pageId=20185497
http://documentation.red-gate.com/display/SDOC3/SQL+Doc+3+documentation
https://documentation.red-gate.com/display/DDB1
http://documentation.red-gate.com/display/DDB1/Investigating+schema+changes#Investigatingschemachanges-SQLCIintegration
https://documentation.red-gate.com/pages/viewpage.action?pageId=20185497

2.

3.

1.

On the page, click and select from the drop-down:Triggers Add new trigger VCS Trigger

Click .Save
TeamCity will now run a build when you check in a change to your database.WidgetDevelopment

Trigger a build

Make a change to the database to trigger a build automatically:WidgetDevelopment

Add a new column to the table:Image Contacts

2.

3.

4.
5.

Use SQL Source Control to add a comment and commit the change:

Once the change is committed to source control, TeamCity picks up the change and runs a build.
To display the build status, click :Projects

To show a summary of the log messages printed by the build, move your cursor over the drop-down button, and then click .Success Build log
To view the NuGet package, click :Artifacts

Test the package

In this section you'll:

check a SQL Data Generator file into version control. This will generate meaningful test data for the database
add a test step so that every time there's a new build of your database, DLM Automation will create a temporary version and run tSQLt tests
against it

trigger a build to test this step

The WidgetDevelopment database already has tSQLt installed. When you're setting this up in your own environment, you'll need to install it. For more
information, see . SQL Test

Check the SQL Data Generator file into version control

The build artifact is the name TeamCity gives to the output of a build step. In this example, the NuGet package is the artifact, and it's
stored on TeamCity's server until we're ready to deploy it.

http://www.red-gate.com/products/sql-development/sql-test/

1.

2.
3.
4.

1.

2.
3.

4.

5.
6.

7.

1.
2.

3.

4.

We've provided a SQL Data Generator file that's already configured to generate data that's meaningful to the rows, columns and tables in the WidgetDevel
 database. You extracted this file from the file.opment WidgetDevelopmentDatabaseCIDemo.zip

 Check the file into SVN:WidgetTestData.sqlgen

Using Windows Explorer, copy the WidgetTestData.sqlgen file from WidgetDevelopmentDatabaseCIDemo > WidgetShop > Database to C:
/WidgetShop
Right-click on the file and select . WidgetTestData.sqlgen TortoiseSVN > Add
Right-click again and select .SVN Commit
At the dialog, add a comment, for example, . Click .Commit sqlgen file added OK

Add a test step

You can run different types of tSQLt tests, such as static analysis, unit or integration tests, against your temporary database.

The database schema for WidgetDevelopment already includes four basic SQL Cop tests that will run against the temporary database and check for:

procedures named SP_
procedures using dynamic SQL without sp_executesql
procedures with @@Identity
procedures with SET ROWCOUNT

There's also a unit test in the schema that checks email addresses in the Contacts column. Once the tests are complete, DLM Automation generates test
reports for review. The temporary database is then dropped.

To create the test step:

On the page, click :Build Steps Add build step

From the drop-down, select .Runner type Red Gate DLM Automation Test
Under , at the field, enter . Output package Package ID WidgetShopLatest
This is the name of the NuGet package created by the build step.
Under , select . Temporary database server SQL LocalDB
DLM Automation will use LocalDB to recreate the database for testing.
At the option, leave selected.Run tests Run every test
At the option, select the check box, and enter the path to the Generate test data Populate the database with data before testing WidgetTestDa
ta.sqlgen file.
This must be relative to the VCS Root folder. In this example, the path is , so you just need to enter file:///Z:/WidgetShop/ WidgetTestData.sqlgen.
Click .Save

Trigger a build

Make a change to the database to trigger the build and test steps automatically:WidgetDevelopment

Check in a change to the database.WidgetDevelopment
To display the build status, in TeamCity click . Projects > WidgetShop
Once the build step is complete, the test step starts automatically.
Once the steps are complete, click :Tests passed: 5

Click the tab. Tests
Details of the completed SQL Cop tests and unit test are displayed:

http://assets.red-gate.com/delivery/ci/WidgetDevelopmentDatabaseCIDemo.zip
http://blogs.lessthandot.com/index.php/DataMgmt/DBProgramming/MSSQLServer/don-t-start-your-procedures-with-sp_/
http://blogs.lessthandot.com/index.php/DataMgmt/DataDesign/avoid-conversions-in-execution-plans-by-
http://wiki.lessthandot.com/index.php/6_Different_Ways_To_Get_The_Current_Identity_Value
https://github.com/CF9/Databases.RGDemo/blob/master/RedGateScripts/Stored%20Procedures/SQLCop.test%20Procedures%20With%20SET%20ROWCOUNT.sql

4.

1.
2.
3.

1.
2.
3.
4.
5.

6.

To see more details about a specific test, or for troubleshooting a failed test, move your cursor over the drop-down button and select Show in
.build log

Sync the package to a CI environment

Once your database has been through an initial test phase, it's good practice to run system, acceptance or smoke tests against it in an environment that
simulates production. We'll called this the CI (Continuous Integation) database, although it's sometimes called staging or preproduction.

In this section you'll:

create a CI database
add a sync step so that every time your database has been built and tested, DLM Automation will synchronize it to your CI database

trigger a build to test this step

Create a CI database

Create a blank database called as your CI database:WidgetCI

Open SQL Server Management Studio (SSMS).
Click .New Query
Execute the following SQL query to create the database: WidgetCI

CREATE DATABASE WidgetCI
GO
USE WidgetCI
GO

The database is now configured. It doesn't need to be checked into source control because it'll be updated automatically every time a change is
made to the database.WidgetDevelopment

Add a sync step

Add a sync step in TeamCity:

On the page, click .Build Steps Add build step
From the drop-down, select .Runner type Red Gate DLM Automation Sync
Under Output package, at the Package ID text box, enter . WidgetShopLatest
This is the name of the NuGet package you've already built and tested.
Under Database server, enter the name of the target server and database you want to update. In this example, we're updating the databWidgetCI
ase using Windows authentication.
Click .Save

Trigger a build

Check in a change to the database to trigger a build.WidgetDevelopment

Once the build and test steps are complete, open SSMS to verify that the database has been synchronized with the contents of WidgetCI
WidgetDevelopment: is in sync with :WidgetCI WidgetDevelopment

The database is now up to date with the latest version in source control. At this point, you could run additional tests against WidgetCI it.

Publish the package to a NuGet feed

Now that you've finished testing, you can publish the package to a NuGet feed. You can then use Octopus Deploy with DLM Automation to manage
deployments.

We'll use TeamCity as a NuGet server to save you having to set up your own repository. For more details, see Using TeamCity as a NuGet Server (TeamCi
ty documentation).

In this section you'll:

 so you can publish the package to its NuGet feedenable the TeamCity NuGet server
trigger a build to test this step

Enable the TeamCity NuGet server

If you're using a different release management tool, check the help documentation provided by that tool vendor.

https://confluence.jetbrains.com/display/TCD9/NuGet#NuGet-UsingTeamCityasNuGetServer

1.

2.

1.
2.

In TeamCity Administration, under , click :Integrations NuGet

On the NuGet Server tab, click :Enable

Trigger a build

Trigger a build to publish the package to the NuGet feed automatically.

 Release management
 Now you can use Octopus Deploy and DLM Automation to deploy your database.

The easiest way to do this is using DLM Automation step templates for Octopus Deploy.

1. Copy the DLM Automation step templates to your Octopus Deploy library

After you've copied the DLM Automation step templates to your Octopus Deploy library, they're available whenever you add a process step in an Octopus
Deploy project:

Go to the on the Octopus Deploy library website.DLM Automation step templates
In this example, we'll use the "Redgate - Create Database Release" and "Redgate - Deploy from Database Release" step templates.
Click on the "Redgate - Create Database Release" template.

http://www.red-gate.com/dlmas/steptemplates

3.

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.

1.

2.
3.
4.

5.

6.

7.

8.

1.

Click :Copy to clipboard

You're now ready to paste the script from your clipboard into your Octopus Deploy library:

In Octopus Deploy, at the top of the page, click .Library
On the tab, click .Step templates Import
In the Import window, paste the copied template into the empty field.
Click .Import
Click .Save
Repeat steps 1 to 5 to copy the "Redgate - Deploy from Database Release" step template in the same way.

2. Create an Octopus Deploy project

In Octopus Deploy, click and .Projects All
Click .Add project
In the field, enter .Name Widget Deployment
Click .Save

You'll now add a series of deployment process steps to your Octopus Deploy project.

3. Add the "Download and extract database package" step

This step picks up the NuGet package of the database schema you're going to deploy.

Set up your NuGet package feed by doing one of the following:
register your existing external NuGet package feed with Octopus. For more details, see .Adding external package feeds
configure your build server to push packages to the Octopus built-in repository. For more details, see .Using the built-in repository

In the project, on the tab, click and select .Widget Deployment Process Add step Deploy a NuGet package
In the field, enter .Step name Download and extract database package
In the field, enter and press .Machine roles db-server Enter
This must match the role you assigned to the Tentacle.
In the field, select either the name of the external feed you registered when you , or the NuGet feed set up your NuGet feed Octopus Server (built-

 repository.in)
In the field, enter the name of the package without the version number. For example, if the package was called NuGet package ID WidgetShopLa

, you'd only enter test.0.1.nupkg Widget.
When the package is generated, NuGet package manager automatically adds a number. If we included it here, Octopus would only deploy the
package that matched that name and version number. By removing the number, we're telling Octopus to always look for the latest package with
that name.
In the field, select .Environments Production
If you leave this blank, the step will be accessible to all environments.
Click .Save

4. Add the "Create database release" step

This step creates the database deployment resources, including the Update.sql script.

On the project tab, click and .Process Add step Redgate - Create Database Release

http://docs.octopusdeploy.com/display/OD/Package+repositories#Packagerepositories-Addingexternalpackagefeeds
http://docs.octopusdeploy.com/display/OD/Package+repositories#Packagerepositories-Usingthebuilt-inrepository
http://documentation.red-gate.com/display/SR1/Deploying+to+multiple+environments+using+Octopus+Deploy#DeployingtomultipleenvironmentsusingOctopusDeploy-Nugetfeed

2.

3.

4.
5.
6.
7.

8.

9.

1.
2.
3.

4.

5.

1.
2.

3.

4.
5.
6.
7.

8.

9.

In the field, enter and press .Machine roles db-server Enter
This must match the role you assigned to the Tentacle.
In the field, enter the path the database deployment resources will be exported to.Export path
This path will later be used in the "Deploy from Database Release" step. It must be accessible to all tentacles used in database deployment steps.
In the field, select .Database package step Download and extract database package
In the field, enter the fully qualified SQL Server instance for the database you're deploying to.Target SQL Server instance
In the field, enter the name of the database you're deploying to.Target database name
In the and fields, enter the SQL Server username and password used to connect to the target Username (optional) Password (optional)
database.
If you leave these blank, Windows authentication will be used to connect to the target database.
In the field, select .Environments Production
If you leave this blank, the step will be accessible to all environments.
Click .Save

5. Add the "Review database deployment resources" step

This step pauses deployment to let you review the database deployment resources, including the Changes.html report, before allowing deployment to go
ahead.

On the project tab, click and select .Process Add step Manual intervention required
In the field, enter Step name Review database deployment resources.
In the field, copy and paste this text: Instructions

Please review the schema and static data changes, warnings and SQL change script in 'Changes.html'.

In the field, select .Environments Production
If you leave this blank, the step will be accessible to all environments.
Click .Save

6. Add the "Deploy from database release" step

This step uses the database deployment resources to deploy the database changes.

On the project tab, click and select .Process Add step Redgate - Deploy from Database Release
In the field, enter and press .Machine roles db-server Enter
This must match the role you assigned to the Tentacle.
In the field, enter the path the database deployment resources will be exported to.Export path
This must match the export path you entered in . 4. Add the 'Create database release' step
In the field, select .Database package step Download and extract database package
In the field, enter the fully qualified SQL Server instance for the database you're deploying to.Target SQL Server instance
In the field, enter the name of the database you're deploying to.Target database name
In the and fields, enter the SQL Server username and password used to connect to the target Username (optional) Password (optional)
database.
If you leave these blank, Windows authentication will be used to connect to the target database.
In the field, select .Environments Production
If you leave this blank, the step will be accessible to all environments.
Click .Save

1.

a.
b.
c.

2.

3.
4.

You've finished setting up the project steps. The Process tab should look like this:

7. Create a release

Now all the steps are set up, you can run your deployment process to create a release:

Create a blank database called :WidgetProduction

Open SQL Server Management Studio (SSMS).
Click .New Query
Execute the following SQL query to create the database:

CREATE DATABASE WidgetProduction
GO
USE WidgetProduction
GO

In the project, on the tab, click .Widget Deployment Process Create release
This page lets you add an optional release note.
Click . Save
Click (or if there's more than one environment, click and select).Deploy to Production Deploy Production

5.

6.

7.
8.

Click .Deploy Now
As the deployment process runs, Octopus Deploy shows the task progress list. The deployment pauses so you can review the database
deployment resources:

Click to download the Change report.Changes.html
Use the report to review the update script, warnings, and details of what'll be added, removed or modified if you go ahead with deployment.
In Octopus Deploy, click and, in , enter a comment to say you've reviewed the database deployment resources.assign to me Notes
If you're happy with the report, click .Proceed
When the deployment is complete, the Task progress page looks like this:

You've now completed the deployment of the database package.

	Walkthrough: Set up Continuous Integration And Release Management

