
1.
2.
3.

1.

2.
3.
4.

5.
6.
7.

Build components

Requirements

Any continuous integration server that can run MSBuild
For build-time migration script verification, then on the agents:

Microsoft ODBC Driver 13.1 for SQL Server (x86/x64)
Microsoft Command Line Utilities 14.0 for SQL Server (x86/x64)
After installing the above, the machine (or agent process) must be restarted: the above installer adds the utility to the PATH system
environment variable, enabling ReadyRoll to find and execute the SqlCmd utility.

Installation

The need to be installed on your build agents.build components

There are a few of options available to you. Options A and B are easier to set up and maintain, however if consistency between Visual Studio and
Continuous Integration builds is a priority, Option C is recommended.

Option A - In VSTS/TFS, use the ReadyRoll build definition template

If you are building a ReadyRoll project with the build definition template provided by the ReadyRoll extension, the ReadyRoll build components will be
installed to your build agent automatically using two build tasks: and NuGet Tool Installer ReadyRoll Download Build Components.

If you have a custom build definition, just add these two tasks before the task.Visual Studio Build

Some versions of TFS may not support these tasks. If you cannot find them in your version of TFS, consider options B or C.

More detailed instructions on how to set up a ReadyRoll build in VSTS/TFS can be found .here

Or, Option B – Install the ReadyRoll Visual Studio extension on each build agent:

If you have admin and remote desktop access to your build agents, you may find this to be the simpler of the two options.

Install the ReadyRoll on each build agent by downloading and installing the (eg, via remote desktop).build components ReadyRoll Visual Studio extension

Or, Option C – Use the ReadyRoll.MSBuild NuGet package:

If you don't have admin access to your build agents, or if you would like to control the versioning of your build-time dependencies, ReadyRoll also allows
you to install the using the .build components ReadyRoll.MSBuild NuGet package

In Visual Studio, open the solution containing database project(s) and add a new project to the solution, e.g. Class Library (.NET Framework) Plac
eholderLibrary
Open the by clicking then then .Package Manager Console View Other Windows Package Manager Console
From the drop-down select the placeholder class library project.Default Project
In the , enter:Package Manager Console

Install-Package ReadyRoll.MSBuild

In the , right-click the ReadyRoll database project, then click .Solution Explorer Unload Project
In the , right-click the ReadyRoll database project, then click Solution Explorer Edit <ProjectName>.sqlproj
In the , add the following snippet under the root node ():.sqlproj file <Project>

The ReadyRoll depend on the migration scripts created by the .build components Visual Studio extension

The ReadyRoll work with any continuous integration server (eg, VSTS/TFS, TeamCity, Jenkins, Bamboo, etc), and let you:build components

build the database alongside an application as part of a continuous integration process
validate the migration scripts
run tSQLt tests, integration tests, etc
create a package used by the release components

The below steps differ to the standard package installation/upgrade process due to the lack of support within the NuGet client for database
. This necessitates the addition of an (otherwise empty) class library project within your solution, which acts as a placeholder for the projects

NuGet package reference.

https://www.microsoft.com/en-us/download/details.aspx?id=53339
https://www.microsoft.com/en-us/download/details.aspx?id=53591
https://documentation.red-gate.com/pages/viewpage.action?pageId=43745283
https://documentation.red-gate.com/display/RR1/Visual+Studio+extension
https://www.nuget.org/packages/ReadyRoll.MSBuild
https://github.com/NuGet/Home/issues/637
https://github.com/NuGet/Home/issues/637

7.

8.
9.

10.
11.

12.

1.
2.
3.
4.

5.
6.

<PropertyGroup>
 <ReadyRollNuGetBaseFolder>$(MSBuildThisFileDirectory)..\packages</ReadyRollNuGetBaseFolder>
 <ReadyRollNuGetIsRestored Condition="$([System.IO.Directory]::GetDirectories
($(ReadyRollNuGetBaseFolder), 'ReadyRoll.MSBuild.*').Length) != 0">True</ReadyRollNuGetIsRestored>
 <ReadyRollTargetsPath Condition="$(ReadyRollNuGetIsRestored) == 'True'">$([System.IO.Directory]::
GetDirectories($(ReadyRollNuGetBaseFolder), 'ReadyRoll.MSBuild.*')[0])\tools\ReadyRoll.Data.Schema.SSDT.
targets</ReadyRollTargetsPath>
</PropertyGroup>

Save the file.
In the , right-click the ReadyRoll database project, then click .Solution Explorer Reload Project
In the dialog box, click .Yes
To confirm that the have been successfully installed, , then in the window, find the line containing build components Rebuild Solution Output "Usi

 and check that the path to the file is within your solution's folder.ng ReadyRoll toolpath" .targets packages
Commit the changes to source control.

You have now completed the installation of the NuGet package.ReadyRoll.MSBuild

Upgrading the ReadyRoll.MSBuild NuGet package

Close and re-open Visual Studio. This is needed in order to release file locks on ReadyRoll build-time dependencies.
Open the by clicking then then .Package Manager Console View Other Windows Package Manager Console
From the drop-down select the placeholder class library project.Default Project
In the , enter:Package Manager Console

Update-Package ReadyRoll.MSBuild

Close and re-open the solution. This is needed in order for the upgrade to take effect within the database projects.
To confirm that the build components have been successfully upgraded, , then in the window, check that the ReadyRoll Rebuild Solution Output
version matches that of the upgraded NuGet package.

If your project was created with ReadyRoll 1.14.17 or earlier, the file will contain another instance of the .sqlproj <ReadyRollTargetsPat
 element. Ensure that the element is only specified once by replacing it with the above definition.h> <ReadyRollTargetsPath>

The element in the above snippet assumes that your solution file (.sln) is in the parent folder of the <ReadyRollNuGetBaseFolder>
ReadyRoll database project file. If the solution file is not in the parent folder, then you will need to modify the relative path in .sqlproj
the value as appropriate (that is the part that contains the sub-string " ")...\packages

You will either need to do a during build, or also commit the folder to source control, just like with any other NuGet restore packages
NuGet reference.

To locate the version number, in the output text look for the file path that follows the string If the version "Using ReadyRoll toolpath" .
number does not match the upgraded NuGet package, check that the element is defined exactly as specfied ReadyRollTargetsPath
above in the project file, and that there are no other versions of present in the folder.ReadyRoll.MSBuild packages

Getting started

For details on how to get started:

If you are using VSTS/TFS, see Create VSTS/TFS build
For anything else, see Continuous integration

https://documentation.red-gate.com/pages/viewpage.action?pageId=43745283
https://documentation.red-gate.com/display/RR1/Continuous+integration

	Build components

