
Variables
SQL Change Automation allows you to deploy from the same project folder to multiple environments. However, there may be environment specific
requirements for each deployment. For instance, you may want to produce more detailed logs when deploying to a User Acceptance Test environment.
Instead of hard-coding these variations into your project scripts, it's possible to parameterize your deployments with the help of SQLCMD variables.

You start by adding variable definitions to your SQL Change Automation project within Visual Studio, along with default values, and when it comes to
deploy your database outside of the IDE, you can supply values that are appropriate to each of your target environments. These custom values can be
provided by a Continuous Integration server like TeamCity, TFS or Bamboo, using a custom installer (e.g. an InstallShield or Wix package), or with a
deployment tool like .Octopus Deploy with SQL Change Automation Octopus Packages

Download the used in this article.sample project (VariableSampleProj.zip, 6kB)

Adding a SQLCMD Variable to your project

You can add SQLCMD variables to your SQL Change Automation project within the tab of project properties.SQLCMD Variable

The value you provide in the column will be stored in the project file (and therefore shared with other team members) however the value is Default Local
specific to your machine (stored in the non-source controlled .user file). If you leave the Local column blank, the Default will be used when deploying inside
Visual Studio.

Using the notation, reference the variable in a new migration script.$(VariableName)

https://documentation.red-gate.com/pages/viewpage.action?pageId=54821010
#

When you build the project, the variable will be substituted with the value (or value, if it was provided).Default Local

Deploying with environment-specific values

When building your SQL Change Automation project outside of Visual Studio, SQL Change Automation can produce a re-usable type of deployment
artifact called a (equivalent to a file) which contains all of your project's migrations, SQLCLR assemblies and pre/post-SQLCMD package DACPAC
deployment scripts.

This packaging format is designed with the approach in mind, meaning that you can use the same package to deploy to build once, deploy many times
your Development, Staging & Production environments. To cater for differences between your environments, you can provide values for variables at the
command line, or within the configuration of your Continuous Integration/Deployment server.

To enable package creation as part of your build, firstly enable the option under within project properties:SQLCMD package Output

Build your project to produce the package deployment T-SQL script and accompanying PowerShell script (i.e. and VariableSampleProj_Package.sql Variab
).leSampleProj_DeployPackage.ps1

To deploy your database, open a Command Prompt session, navigate to the output folder for your project (e.g.) and execute the following bin/debug
command, substituting in the relevant values:

@powershell -NoProfile -ExecutionPolicy unrestricted -Command "& { $DatabaseServer='(localdb)\ProjectsV13';
$Environment='STAGING'; .\AdventureWorks_DeployPackage.ps1 }"

Variable qualifiers

When using variables in your scripts, qualifiers must be used in order for your scripts to be successfully parsed and validated by the build
engine.

When using a variable within an object or database name, the variable must be enclosed by [] square brackets, e.g. SELECT * FROM
[$(MyObjectNameVariable)]
When using a variable within a string, the variable must be enclosed by quotation marks, either with the '' single-quote or "" double-
quote characters, e.g. PRINT '$(HelloWorldVariable)'
When using a variable that contains a numeric value, the variable must be treated like a string (as above) and cast as a numeric data
type before it can be used. For example DECLARE @myNumber int = CAST('$(MyNumberVariable)' AS int)

Octopus Deploy

SQL Change Automation has first-class support for Octopus Deploy: any variable that you define on the tab will SQLCMD Variable
automatically be sourced from your Octopus project variables at deploy-time.

Additionally, if you intend to use Octopus to orchestrate your database deployments, you do not need to enable the above option. For more
details, see our guide on setting up SQL Change Automation projects with .Octopus Deploy with SQL Change Automation Octopus Packages

https://documentation.red-gate.com/pages/viewpage.action?pageId=54821010

Or to deploy directly within PowerShell, use this command:

& { $DatabaseServer='(localdb)\ProjectsV13'; $Environment='STAGING'; .\AdventureWorks_DeployPackage.ps1 }

(Click to enlarge)

Note the list of default values that is emitted during deployment. These values are taken from the Default column in the SQLCMD variable definition, but
can be overriden by simply specifying additional PowerShell variables as part of the deploy command. For example, in the above deployment, we provided
a value for the variable (). We also provided a value for the built-in variable (), which is used to Environment "STAGING" DatabaseServer "(local)\A"
instruct the tool to deploy to a given instance of SQL Server.SqlCmd

However you can also override any of the other built-in variables. For example, you may decide to override , if you want to deploy multiple DatabaseName
copies of the database to the same SQL Server instance ().MyDb_DEV, MyDb_STG, MyDb_PROD

System Variables

The following is a list of system variables that you can provide to your from the or with package-based deployment PowerShell command line
corresponding .Octopus variables

Name Example Description

DatabaseServer MYDBSERVER
\INSTANCE

Required. Name of the SQL Server machine\instance to deploy to.

DatabaseUserN
ame

sa Optional. Provide a value for these variables if you would like to use to connect to your SQL Server Authentication
database server, otherwise will be used.Windows Integrated Authentication

DatabasePassw
ord

UseSqlCmdVari
ableDefaults

True Optional. Set to False if you require that values for all non-system SqlCmd variables be passed in explicitly, rather
than using the default values as set in the project file.

The following is a list of built-in system variables that can be used in your project scripts using SQLCMD syntax, i.e. . Unlike the above $(VariableName)
system variables, all of these apply to both the .package and patch-based deployment methods

The values for each of these variables can be overridden at the command line or with corresponding Octopus variables, with the exception of the Package
 variable which is set at build-time and thus is read-only.Version

Name Example Description/Default value

Databa
seName

Adventure
Works

The name of the database being deployed. This value is sourced from the MSBuild property, and if that has TargetDatabase
not been specified, the name of the SQL Change Automation project itself.

The above variables are passed into the deployment script and thus cannot be used in your project migrations, programmable objects etc.not

http://msdn.microsoft.com/en-us/library/ms162773.aspx
https://documentation.red-gate.com/pages/viewpage.action?pageId=54821202
https://documentation.red-gate.com/pages/viewpage.action?pageId=54821004
https://documentation.red-gate.com/pages/viewpage.action?pageId=54821010
https://documentation.red-gate.com/pages/viewpage.action?pageId=54821202

Release
Version

1.0.0-
MyRelease

Release number to store against deployed migrations within the [dbo].[__MigrationLog] table. There is no default value for this
variable; a warning will be emitted during deployment if it has not been set.

The exception to this is when deploying with , in which case the value is automatically sourced from the Octopus Octopus.
.Release.Number system variable

Packag
eVersion

1.0.123-
MyRelease

Read-only. Package version to store against deployed migrations within the [dbo].[__MigrationLog] table. If Semantic
 has been enabled, it will use the current SemVer for the project. Otherwise, it will be set to .Versioning (undefined)

However, if using , this value will be set at build-time either Octopus Deploy with SQL Change Automation Octopus Packages
from the MSBuild property, or if that has not been provided, from the file within the OctoPackPackageVersion AssemblyInfo.cs
SQL Change Automation project.

ForceD
eployWi
thoutBa
seline

False Default is . If you are attempting to deploy to an existing database, SQL Change Automation performs a check to ensure False
that . This is done to ensure that no objects are accidentally dropped or overwritten during deployment. a baseline has been set
To force the deployment to continue without a baseline, set this to .True

Deploy
Path

c:
\Source\My
Project\

Provides the full path to the currently deploying project/package, useful when needing to refer to packaged files from your
scripts. In Visual Studio, this will be the root of the project (i.e. where the .sqlproj file is located), and in Octopus Deploy this will
be the path that the package is extracted to, e.g. C:\Octopus\Applications\MyProject\AdventureWorks.Database\1.0.0.123\. For
more information, see .Seed Data

Default
FilePrefix

Adventure
Works

The filename prefix for the MDF/LDF files for your database storage. The default value for this variable is the same as Databas
.eName

Default
DataPath

D:
\MSSQL11
\MSSQL\D
ata\

The default directory paths for the MDF/LDF/BKP files, which can be used to determine where your database should be stored
(provided that you have consumed these variables in the statement of your CREATE Pre-Deployment\01_Create-Database.sql
project file).

These variables are sourced from the instance-specific branch of the SQL Server's system registry. In the event that no default
paths have been set for that SQL Server instance, the directory paths to the [master] database's files will be used instead.Default

LogPath
D:
\MSSQL11
\MSSQL\L
og\

Default
Backup
Path

D:
\MSSQL11
\MSSQL\B
ackup\

IsShado
wDeplo
yment

1 Read-only. Indicates that the currently executing deployment is to the . Possible values are 0 or 1.shadow database

This can be used to as part of the script verification process or not.gate whether to include a set of statements

As these variables are built into SQL Change Automation, you do not need to add definitions to the project settings tab in SQLCMD Variables
order to use them in your migration scripts.

https://documentation.red-gate.com/pages/viewpage.action?pageId=54821010
http://docs.octopusdeploy.com/display/OD/System+variables
http://docs.octopusdeploy.com/display/OD/System+variables
https://documentation.red-gate.com/display/SCA3/Migration+Grouping
https://documentation.red-gate.com/display/SCA3/Migration+Grouping
https://documentation.red-gate.com/pages/viewpage.action?pageId=54821010
https://documentation.red-gate.com/pages/viewpage.action?pageId=54820930
https://documentation.red-gate.com/pages/viewpage.action?pageId=54821232
https://documentation.red-gate.com/display/SCA3/Development+and+shadow+databases
https://documentation.red-gate.com/display/SCA3/Script+verification

	Variables

