
Programmable Objects
By default, any time you make a change to a stored procedure, function or view, will generate a new incremental migration when SQL Change Automation
you import that change into your SQL Change Automation project.

SQL Change Automation also supports scripting these Programmable Objects to individual T-SQL scripts. This allows you to source control each of your
database objects. Changes to these objects can be branched, merged and annotated.

How do Programmable Object scripts work?

When you enable Programmable Objects, will initialize your project by extracting all of the supported objects (shown below) from SQL Change Automation
your schema into individual script files. These files are re-runnable (idempotent) because they contain a header to replace the entire programmable
object – "IF EXISTS THEN DROP / CREATE PROCEDURE".

Supported objects

The following types of programmable objects are supported for automated script generation:

DDL Triggers
User Defined Functions
Stored procedures
Views

In addition to scripting the objects themselves, will also include the following statements in your programmable object files:SQL Change Automation

Permissions (GRANT/REVOKE)
Extended Properties (sp_addextendedproperty)

If you'd like to deploy other types of objects not listed here, you can add your own idempotent (re-runnable) scripts by including an folder Additional Scripts
in your project.

Extracting existing Programmable Objects

If you are working with an existing database, you will first need to import existing programmable objects to individual script files within your SQL Change
 project.Automation

To perform this one-off step, start by enabling and select Import all Programmable Objects in Project Settings.Import into separate script files

Table Trigger limitation

Please note that table triggers are not currently supported for automatic script generation: after enabling the Programmable Objects feature,
table trigger objects will continue to be scripted as numerically-ordered Migration scripts, rather than as individual object script files.

SSDT Users

If you've used SQL Server Data Tools (SSDT) database projects before, the file layout that creates for programmable SQL Change Automation
objects may look familiar (see the below section for a screenshot of the layout). The primary difference that the files SQL Change Automation
within the Programmable Objects folder of a project contain imperative logic, as opposed to the declarative logic of SQL Change Automation
SSDT. This means that whatever T-SQL you put into these files will be executed in an unaltered way each time you make a change to the file.

https://documentation.red-gate.com/display/SCA3/Additional+Scripts

Then confirm “ ” to proceed with importing existing database objects into the project for offline editing.Yes

When the import is complete, the tool-window will create a script for each of the programmable objects within your database:SQL Change Automation

Adding new Programmable Objects

We recommend allowing to add Programmable Objects automatically using the command (which SQL Change Automation Import and Generate Script
can be found within the tool-window).SQL Change Automation

If you want to add a programmable object manually, you can add new programmable objects to your project directly within :Solution Explorer

Editing Programmable Objects (Offline)

In each of the imported migrations, you’ll notice that the script appears as “Deployed”, just like an incremental migration.

The difference being that, if we edit a programmable object, we are notified that the script will be executed again:

Deploying the project within Visual Studio, or indeed deploying from a third-party tool like Octopus Deploy or TeamCity, will apply the changes.

Editing Programmable Objects (Online)

So far we've looked at how you can edit your programmable objects in an manner using Visual Studio. However, also offline SQL Change Automation
allows you to edit your objects in an manner – i.e. directly on the database itself – and then import those changes back into your programmable online
object scripts.

For example, say you’ve just used to add a new column to the table. In SQL Server Management Studio [CreatedDate] [SalesLT].[Customer]
addition, you've also altered a user-defined function to reference this new column.

After making these changes, you switch back to Visual Studio and click within the tool-window. You are then presented Refresh SQL Change Automation
with both the table change and function change as :pending import

If you import both objects, the following changes will be made to your project:

Programmable Objects\Functions\dbo.ufnGetContactInformation.sql
Existing file updated to reflect function change
Migrations\1.1.0-AddCreateDate\001_20180613-1538_A.Developer.sql
New migration added, containing the add-column operation

After importing, click to execute the migration scripts against the database. If successful, the tool-window will update, Refresh (Verify Scripts) Shadow
indicating that the project is now in-sync with the target database.

For more information about the shadow database, see .Development and shadow databases

Controlling the order of execution

Programmable Objects are updated after all incremental migrations have been applied. This means you can couple a table change (eg. adding of a
column) and the associated procedure change in the one deployment.

If you need to control the specific order that your programmable objects are deployed, this can be set within the Project Properties by dragging and
dropping items into the required order:

We recommend importing your changes prior to updating from source control, in case merge conflicts need to be resolved in any of your
programmable objects.

If you do happen to update prior to synchronizing with your project, will force you to deploy your project in Visual SQL Change Automation
Studio first to protect the integrity of your source controlled code. This may mean the loss of work-in-progress changes in your target
database.

https://documentation.red-gate.com/display/SCA3/Development+and+shadow+databases

Group by schema (into sub-folders)

By default, groups the objects in the Programmable Objects folder by object type, and prefixes each file with the appropriate SQL Change Automation
schema name (e.g.). If, however, you would like to also group your object files into schema sub-folders (e.g. Stored Procedures\dbo.MyProc.sql Stored

), you can do so with a bit of editing to your SQL Change Automation project file.Procedures\dbo\MyProc.sql

To group your programmable object scripts by schema, edit your `.sqlproj` file (e.g. in Notepad) and add the following under the root node of the file:

<PropertyGroup>
 <DeployChangesImportSchemaFolders>True</DeployChangesImportSchemaFolders>
</PropertyGroup>

Permission Handling

After importing your programmable objects, you'll notice that scripts each of your objects using DROP and CREATE statements. SQL Change Automation
This means that, whenever you deploy your object, the permissions assigned to that object will be reset.

To avoid losing the permissions assigned to your objects in each deployment, appends GRANT/REVOKE statements to each SQL Change Automation
programmable object script, based on the database environment that you imported the scripts from. This works fine for permissions that are stored in
source control, however if you need to control permissions at the object level directly in the target environments, we recommend assigning the permissions
via role objects, rather than assigning them at the individual user/group level.

If the assigning of user permissions directly in your databases is unavoidable, then you may prefer to follow a "pure" approach, instead of using migrations
programmable objects. This approach results in most stored procedure/view/function/etc changes being made using the ALTER statement, which
preserves the permission structures between deployments.

Note for existing database projects

The new folder structure will only apply to new objects that you import using the tool-window, so unfortunately you will SQL Change Automation
need to move any existing files into the appropriate sub-folders yourself.

The reason for the difference in scripting behavior between migrations (ALTER) and programmable objects (DROP/CREATE) is to ensure that
the programmable object scripts are idempotent; since those scripts may be executed many times, using alter might leave behind some state in
the database, so it's safest to recreate the object with each deployment.

https://documentation.red-gate.com/display/SCA3/Migrations

	Programmable Objects

