Resolving Unsupported Programmable Objects

When importing programmable objects into your SQL Change Automation project for the first time, you may notice that one or more scripts are placed into
a folder called Unsupported, instead of the usual Programmable Objects folder. This can happen to a script containing a stored procedure/view/user
defined function object if one or more of the following applies:

® Scenario A: The object contains the SCHEMABINDING clause and it is part of a dependency chain with other schema-bound objects

® Scenario B: (User Defined Functions only) There is a dependency on the object from a table object, for example a computed column or check
constraint with a call to the function

® Scenario C: (User Defined Functions in SQL Server 2016+/Azure SQL Database only) There is a dependency on the function from a security

policy object
® Scenario D: The object contains the NATIVE_COMPILATION clause, preventing it from being deployed within a user transaction

If any of the above applies, SQL Change Automation will separate the affected object files into a folder called Unsupported, which is not included in project
build or database deployment operations. The files are moved into this folder during the import process to prevent the scripts from failing at deployment or
verification time.

Introduction to "dependency chain" scenarios

By default, SQL Change Automation will import all of your schema objects -- both table and programmable object types -- into numerically ordered
migration scripts. However, you can decide to split programmable object types (stored procedures, views, functions etc) into individual files to simplify
source control branch and merge activities, allowing your team to make changes to code objects in parallel.

This works well for objects with "soft" dependencies: for example, a view that selects data from another view, or a stored procedure that calls another
stored procedure, since those types of objects can be repeatedly dropped and recreated in any order without generating errors at deployment time. Things
get more complicated when dealing with "hard" dependencies, such as when a schema-bound view depends on another schema-bound view, or when a
table contains a check constraint that depends on a user-defined function.

To preserve the integrity of schema-bound objects, SQL Server enforces the dependencies between such objects at deployment time. If you try to change
any object that is chained to another object without first unwinding the dependency tree, SQL Server will prevent the change from occurring by raising an
error, causing the deployment to be aborted.

Scenario A: Interdependent schema-bound objects

To demonstrate how objects in a dependency chain can be turned into programmable object scripts, let's take a scenario that involves two schema-bound
views:

-- ViewA sql

CREATE VI EW [dbo] . [Vi ewA]
W TH SCHEMABI NDI NG

AS

SELECT 1 As MW Col ;

GO

-- ViewB. sql

CREATE VI EW [dbo] . [Vi ewB]

W TH SCHEMABI NDI NG

AS

SELECT MyCol FROM [dbo].[ViewA];
[ce)

Here [ViewB] has a dependency on [ViewA]. If we try to make a change to [ViewA], e.g.

ALTER VI EW [dbo] . [Vi ewA]
W TH SCHEMABI NDI NG

AS

SELECT 2 As MyCol ;

e}

The following error will be raised:

Msg 3729, Level 16, State 3, Procedure ViewA, Line 16
Cannot ALTER ' dbo. ViewA' because it is being referenced by object 'ViewB .

SQL Server has indicated that the change cannot be made until all references to the object are removed. The difficulty with using SQL Change Automation'
s programmable objects feature in this scenario is that every script file is executed independently of the others, so dropping and recreating all the objects
in the dependency tree is not possible.

https://documentation.red-gate.com/display/SCA3/Programmable+Objects
https://documentation.red-gate.com/display/SCA3/Programmable+Objects

In order to turn the unsupported files into programmable object files, the objects must be combined into a single script to allow the entire dependency tree
to be deployed in one atomic operation.

In summary, the programmable object script must perform the following operations:

. Drop the child object(s), e.g. [ViewB]

. Drop the parent object, e.g. [ViewA]

. Create the parent object, e.g. [ViewA]
. Create the child object(s), e.g. [ViewB]

A WNBE

The programmable object script (Programmable Objects\Views\dbo.ViewA_dbo.ViewB.sql) will end up looking something like this:

Scenario A - Programmable Object script

I'F OBJECT_ID('[dbo].[ViewB]') IS NOT NULL
DROP VI EW [dbo] . [Vi ewB] ;
ce]

IF OBJECT_ID('[dbo].[ViewA]') IS NOT NULL
DROP VI EW [dbo] . [Vi ewA] ;
GO

CREATE VI EW [dbo] . [Vi ewA]
W TH SCHEMABI NDI NG

AS

SELECT 1 As MyCol ;

e}

CREATE VI EW [dbo] . [Vi ewB]
W TH SCHEMABI NDI NG

AS

SELECT MyCol FROM [dbo] . [Vi ewA ;
Ice)

In this example, both views are dropped and recreated in order of dependency. The conditional logic around the DROP statements ensures that the script
is re-runnable (idempotent), allowing changes to the objects to deployed incrementally to your target databases.

Scenario B: Tables with dependencies on Functions

To demonstrate how a table that has a dependency on a function can be turned into a programmable object script, let's take the scenario of a computed
column that includes a call to a user defined function. For example, the AdventureWorks2014 sample database contains the following table definition:

CREATE TABLE [Sal es] . [Cust onrer]

(

[Customer D] [int] NOT NULL IDENTITY(1, 1),

[Personl D] [int] NULL,

[Storel D] [int] NULL,

[Territoryl D] [int] NULL,

[Account Nunmber] AS (isnull (" AW +[dbo] . [uf nLeadi ngZeros] ([CustoneriD]),"'")),

[rowgui d] [uniqueidentifier] NOT NULL ROAGUI DCOL CONSTRAI NT [DF_Custoner _rowgui d] DEFAULT (newi d()),
[Modi fiedDate] [datetine] NOT NULL CONSTRAI NT [DF_Cust ormer _Modi fi edDate] DEFAULT (getdate())

)

ALTER TABLE [Sal es]. [Custonmer] ADD CONSTRAI NT [PK_Cust omer _Custoner| D] PRI MARY KEY CLUSTERED ([CustonerlD])
ce]

CREATE UNI QUE NONCLUSTERED | NDEX [AK_Cust omer _Account Nunber] ON [Sal es]. [Custoner] ([AccountNunber])
&0

The table's [AccountNumber] column has a reference to the function object, [ufnLeadingZeros]:

SET QUOTED_I DENTI FI ER ON

SET ANSI _NULLS ON

GO

CREATE FUNCTI ON [dbo] . [uf nLeadi ngZer os] (
@/al ue int

)

RETURNS var char (8)

W TH SCHEMABI NDI NG

AS
BEGA N
DECLARE @Rret urnVal ue varchar(8);
SET @Ret urnVal ue = CONVERT(varchar(8), @al ue);
SET @ReturnVal ue = REPLI CATE(' 0', 8 - DATALENGTH(@et urnVal ue)) + @RreturnVal ue;
RETURN (@Ret ur nVal ue) ;
END;
&0

Note that the computed column also has an index on it. In order to make it possible to change the function in an idempotent way, the dependency tree that
involves the computed column and that index upon that column must be unwound and then recreated in the appropriate order within the programmable
object script itself:

Scenario B - Programmable Object script

I'F OBJECT_I D(' [dbo] . [uf nLeadi ngZeros]') |'S NOT NULL

BEG N
DROP | NDEX [Sal es] . [Cust omer]. [AK_Cust onmer _Account Nurber] ;
ALTER TABLE [Sal es].[Custoner] DROP COLUWN [Account Nunber];
DROP FUNCTI ON [dbo] . [uf nLeadi ngZer os] ;

END

G0

SET ANSI _NULLS ON
SET QUOTED_I DENTI FI ER ON
&0

CREATE FUNCTI ON [dbo] . [uf nLeadi ngZer os] (
@/al ue int

)

RETURNS var char (8)

W TH SCHEMABI NDI NG

AS

BEG N
DECLARE @Rret urnVal ue varchar(8);

SET @ReturnVal ue = CONVERT(varchar(8), @al ue);
SET @ReturnVal ue = REPLI CATE(' 0', 8 - DATALENGTH(@et urnVal ue)) + @ReturnVal ue;

RETURN (@et ur nVal ue) ;
END;
GO

ALTER TABLE [Sal es] . [Custoner]
ADD [Account Nunber] AS (isnull (" AW +[dbo] . [uf nLeadi ngZeros] ([CustomerID]),"'"));
GO

CREATE UNI QUE NONCLUSTERED | NDEX [AK_Cust oner _Account Nunber]

ON [Sal es].[Custoner] ([AccountNunber]);
GO

Changes to both the function, as well as the computed column that uses the function, can then be made by simply editing the programmable object file and
deploying the SQL Change Automation project.

Scenario C: Security Policies with dependencies on Functions

To demonstrate how a security policy that has a dependency on a function can be turned into a programmable object script, let's take the following
example from the WideWorldimporters sample database:

CREATE SECURITY POLICY [Application].[FilterCustomersBySal esTerritoryRol €]

ADD FI LTER PREDI CATE [Application].[Determ neCust oner Access] ([DeliveryCitylD])
ON [Sal es] . [Custoners],

ADD BLOCK PREDI CATE [Application].[Determ neCustonerAccess] ([DeliveryCtylD])
ON [Sal es] . [Custoners] AFTER UPDATE

W TH (STATE = ON)

GO

The security policy references the [Application].[DetermineCustomerAccess] function:

SET QUOTED | DENTI FI ER ON
SET ANSI _NULLS ON
Ico)

CREATE FUNCTI ON [Appl i cation].[Determ neCustonerAccess] (@itylD int)
RETURNS TABLE
W TH SCHEMABI NDI NG
AS
RETURN (SELECT 1 AS AccessResult
WHERE | S_ROLEMEMBER(N db_owner') <> 0
OR | S_ROLEMEMBER((SELECT sp. Sal esTerritory
FROM [Application].Cities AS ¢
INNER JO N [Application].StateProvinces AS sp
ON c. StateProvi ncel D = sp. StateProvi ncel D
WHERE c.CitylID = @itylD) + N Sales') <> 0
OR (ORIG NAL_LOG N() = N Website'
AND EXI STS (SELECT 1
FROM [Application].Cities AS c
INNER JO N [Application]. StateProvinces AS sp
ON c. StateProvincel D = sp. Stat eProvi ncel D
WHERE c.CitylD = @itylD
AND sp. Sal esTerritory = SESSI ON_CONTEXT(N Sal esTerritory'))));

In order to make it possible to change the function within a programmable object script, the security policy must first be dropped and then recreated after
the function is modified:

Scenario C - Programmable Object script

I F OBJECT_ID(' [Application].[Determnm neCustonerAccess]') IS NOT NULL

BEGA N
DROP SECURI TY POLICY [Application].[FilterCustonersBySal esTerritoryRole];
DROP FUNCTI ON [Appl i cation]. [Determ neCust oner Access] ;

END

SET QUOTED | DENTI FI ER ON
SET ANSI _NULLS ON
Ico)

CREATE FUNCTI ON [Appl i cation].[Determ neCustonerAccess] (@itylD int)
RETURNS TABLE
W TH SCHEMABI NDI NG
AS
RETURN (SELECT 1 AS AccessResul t
WHERE | S_ROLEMEMBER(N db_owner') <> 0
OR | S_ROLEMEMBER((SELECT sp. Sal esTerritory
FROM [Application].Cities AS ¢
INNER JO N [Application]. StateProvinces AS sp
ON c. StateProvi ncel D = sp. StateProvi ncel D
WHERE c.CitylID = @itylD) + N Sales') <> 0
OR (ORIG NAL_LOG N() = N Website'
AND EXI STS (SELECT 1
FROM [Application].Cities AS c
INNER JO N [Application]. StateProvinces AS sp
ON c. StateProvincel D = sp. Stat eProvi ncel D
WHERE c.CitylD = @itylD
AND sp. Sal esTerritory = SESSI ON_CONTEXT(N Sal esTerritory'))));

GO

CREATE SECURI TY POLICY [Application].[FilterCustonersBySal esTerritoryRole]

ADD FI LTER PREDI CATE [Application].[Determ neCustonerAccess]([DeliveryGtylD])
ON [Sal es] . [Custoners],

ADD BLOCK PREDI CATE [Application].[Determ neCustoner Access] ([DeliveryCtylD])
ON [Sal es]. [Custoners] AFTER UPDATE

W TH (STATE = ON)

G0

Changes to both the function, as well as the security policy that uses the function, can then be made by simply editing the programmable object file and
deploying the SQL Change Automation project.

Scenario D: Deploying natively-compiled objects

Objects that contain the NATIVE_COMPILATION clause require special handling because it is not possible to create, drop or alter these types of objects
within a user transaction. This is important because typically SQL Change Automation will try to execute all of your migrations and programmable

objects within a single transaction to ensure that the deployment is performed atomically. However, in order to deploy natively-compiled stored procedures
and functions, it is necessary to disable SQL Change Automation's automatic transaction handling. This can be done at the script level by pasting the
following metadata onto the first line of affected script(s):

-- <M gration TransactionHandl i ng="Custont />
¢}

For example, this is how the [RecordColdRoomTemperatures] procedure in the WideWorldimporters sample database could be turned into a
programmable object:

https://documentation.red-gate.com/display/SCA3/Transaction+Handling
https://documentation.red-gate.com/display/SCA3/Transaction+Handling
https://documentation.red-gate.com/rr1/key-concepts/transaction-handling#TransactionHandling-CustomTxnHandlingDisablingAutomaticTransactionHandling

Scenario D - Programmable Object script

-- <M gration TransactionHandl i ng="Custont />

GO

I F OBJECT_I D(' [Website].[RecordCol dRoonTenperatures]') IS NOT NULL
DROP PROCEDURE [Websi t e] . [Recor dCol dRoonirenper at ur es] ;

GO

SET QUOTED | DENTI FI ER ON
SET ANSI _NULLS ON
Ico)

CREATE PROCEDURE [Websi t e] . [Recor dCol dRooniTenper at ur es]
@ensor Readi ngs Websi t e. Sensor Dat aLi st READONLY
W TH NATI VE_COWPI LATI ON, SCHEMABI NDI NG EXECUTE AS OMNER
AS
BEG N ATOM C W TH
(

TRANSACTI ON | SOLATI ON LEVEL = SNAPSHOT,

LANGUAGE = N Engli sh'

BEA N TRY

DECLARE @lunber Of Readi ngs int = (SELECT MAX(Sensor Dat aLi st1 D) FROM @ensor Readi ngs) ;
DECLARE @ounter int = (SELECT M N(SensorDat aLi st1 D) FROM @ensor Readi ngs) ;

DECLARE @Col dRoonBensor Nunber int;
DECLARE @Recor dedWhen datetinme2(7);
DECLARE @enperature deci mal (18, 2);

-- note that we cannot use a nerge here because multiple readings might exist for each sensor

VWH LE @Counter <= @\Wunber O Readi ngs
BEA N
SELECT @Col dRoonSensor Nunber = Col dRoonfSensor Nunber ,
@Recor dedWhen = Recor dedWen,
@enperature = Tenperature
FROM @pensor Readi ngs
VWHERE Sensor Dat aLi st1 D = @ounter;

UPDATE War ehouse. Col dRoonirenper at ur es
SET Recor dedWhen = @Recor dedWen,
Tenperature = @enperature
VWHERE Col dRoonSensor Nunber = @Col dRoonSensor Nunber ;

I F @RONCOUNT = 0
BEA N
I NSERT War ehouse. Col dRooniTenper at ur es
(Col dRoonSensor Nunber, Recor dedWhen, Tenperat ure)
VALUES (@ol dRoonBensor Nunber, @Recor dedWhen, @enperature);
END;

SET @ounter += 1;
END;

END TRY
BEA N CATCH
THROW 51000, N Unable to apply the sensor data', 2;

RETURN 1;
END CATCH,
END;

1 Asitis necessary to first COMMIT any open transactions before deploying natively-compiled objects, and a new transaction opened after it to
deploy the remaining objects, it is recommended that that these objects be prioritized last in the deployment order (assuming there are no
dependencies on the natively-compiled objects).

https://documentation.red-gate.com/display/RR1/Programmable+Objects#ProgrammableObjects-Controllingtheorderofexecution

	Resolving Unsupported Programmable Objects

