Redgate Test Data Manager

Using different or custom datasets

Choose a different dataset for masking a column

To override with a different dataset, add the column to your options file and specify a "dataset"  on the column.

  1. {
  2. "tables": [
  3.   {
  4.     "schema": "Person",
  5.     "name": "Address",
  6.     "columns": [
  7.       {
  8.         "name": "CountyOrState",
  9.         "dataset": "USStates"
  10.       }
  11.     ]
  12.   }
  13. ]
  14. }

Define a custom dataset for masking

To define a custom dataset for your column, you can choose between:

  • Pattern-based
  • List-based (specify a collection of values)
  • File-based (use a .txt file containing a list of line-separated values. The .txt file must be in the same directory as the options file.)


Note: The "name" property of the dataset in your options file can be one of the built-in datasets (overriding that dataset), or a distinct name of your choice (creating an additional dataset). Any column in your masking file that is assigned your named dataset will be masked with the values you define.

Pattern Toggle source code

  1. {
  2. "datasets": [
  3.   {
  4.     "name": "MiddleInitials",
  5.     "type": "Pattern",
  6.     "values": ["?.", "?. ?."]
  7.   }
  8. ]
  9. }


List Toggle source code

  1. {
  2. "datasets": [
  3.   {
  4.     "name": "ShortFirstNames",
  5.     "type": "List",
  6.     "values": [ "Ann", "Bob", "Carlos", "Dalip"]
  7.   }
  8. ]
  9. }


File Toggle source code

  1. {
  2. "datasets": [
  3.   {
  4.     "name": "NorthWestCities",
  5.     "type": "File",
  6.     "file": "NorthWestCities.txt"
  7.   }
  8. ]
  9. }


NorthWestCities.txt Toggle source code

  1. Bellevue
  2. Kennewick
  3. Pasco
  4. Portland
  5. Seattle
  6. Spokane
  7. Tacoma
  8. Yakima

Formatting of masked values

To enforce a particular format for alphanumeric strings, specify the format with a pattern using the following rules:

  • # representing integers (0-9)
  • ? representing characters (A-Z)
  • * representing either integers or characters
  • \ to escape pattern characters
  1. {
  2. "datasets": [
  3.   {
  4.     "name": "PhoneNumbers",
  5.     "type": "Pattern",
  6.     "values": [
  7.       "(###) ###-####",
  8.       "(###) ###-#### x####",
  9.       "1-###-###-####",
  10.       "###-###-####"
  11.     ]
  12.   }
  13. ]
  14. }


Note: In this options file example, we are overriding the built-in PhoneNumbers dataset. Any column assigned the PhoneNumbers dataset will be masked with values that match one of the patterns specified in the values array. For all the values to have the same format, specify only one pattern in your values array.

Preserving null data values

By default, null data values will be preserved when masking. To turn this behaviour off, add "preserveNull": false  to the corresponding JSON node.

  1. {
  2. "tables": [
  3.   {
  4.     "schema": "Person",
  5.     "name": "PersonPhone",
  6.     "preserveNulls": false
  7.   }
  8. ]
  9. }
  1. {
  2. "tables": [
  3.   {
  4.     "schema": "Person",
  5.     "name": "PersonPhone",
  6.     "columns": [
  7.       {
  8.         "name": "PhoneNumber",
  9.         "preserveNulls": false
  10.       }
  11.     ]
  12.   }
  13. ]
  14. }

Didn't find what you were looking for?